Contents

	Preface	ix
I	Sobolev spaces	1
§1	Notation, basic properties, distributions	1
-	Notation	1
1.2	Partition of unity	4
	Regularisation of functions	8
1.4	Distributions	10
1.5	The support of a distribution	12
	Differentiation and multiplication	14
	Distributions with compact support	18
1.8	Convolution	20
1.9	The Fourier transformation	25
§2	Geometric assumptions for the domain Ω	35
2.1	Segment and cone properties	36
2.2	The $N^{k,\kappa}$ -property of Ω	38
	(k,κ) -diffeomorphisms and (k,κ) -smooth Ω s	47
2.4	Normal transformations	52
2.5	Differentiable manifolds	58
§3	Definitions and density properties for the Sobolev-Slobodeckii spaces $W_2^l(\Omega)$	61
	Definition of the Sobolev-Slobodeckii spaces $W_2^l(\Omega)$	61
3.2	Density properties	64
§4	The transformation theorem and Sobolev spaces on differentiable manifolds	74
4.1	The transformation theorem	75
4.2	Sobolev spaces on differentiable manifolds, and on the frontier $\partial \Omega$ of $a(k, \kappa)$ -	
	smooth region	87
§5	Definition of Sobolev spaces by the Fourier transformation and extension	
	theorems	90
5.1	Sobolev spaces and the Fourier transformation	91
5.2	Extension theorems	95
§6	Continuous embeddings and Sobolev's lemma	105

vi Contents

87	Compact embeddings	112
-	The trace operator	120
-	Weak sequential compactness and approximation of derivatives by dif-	120
3-	ference quotients	133
П	Elliptic differential operators	139
	Linear differential operators	139
-	The Lopatinskii-Šapiro condition and examples	148
•	The Lopatinskii–Šapiro condition	148
	Examples	157
	Fredholm operators	165
	The Riesz-Schauder spectral theorem (compact operators)	165
	Fredholm operators	168
	A priori estimates, the Weyl lemma and smoothable operators	180
	The main theorem and some theorems on the index of elliptic boundary	
•	value problems	186
13.1	The main theorems for elliptic boundary value problems	186
	The index and spectrum of elliptic boundary value problems	209
	Green's formulae	213
14:1	Normal boundary value operators and Dirichelet systems	214
14.2	The first Green formula	219
14.3	Adjoint boundary value operators and boundary value spaces	222
14.4	The second Green formula	231
14.5	The antidual operator L' and the adjoint boundary value problem	235
§15	The adjoint boundary value problem and the connection with the image	
	space of the original operator	239
§16	Examples	252
Ш	Strongly elliptic differential operators and the method of	
	variations	261
817	Gelfand triples, the Lax-Milgram theorem, V-elliptic and V-coercive	
.	operators	261
17.1	Gelfand triples	261
	Representations for functionals on Sobolev spaces	268
	The Lax-Milgram theorem	271
	V-elliptic and V-coercive forms, solution theorems	273
	The Green operator	275
	The concepts V-elliptic and V-coercive for differential operators	279
	Agmon's condition	280
_	Agmon's theorem: conditions for the V-coercion of strongly elliptic	
	differential operators	290
19.1	The theorems of Gårding and Agmon	290
19.2	Examples, including the Dirichlet problem for strongly elliptic differential	
	operators	302

Contents vii

§20	Regularity of the solutions of strongly elliptic equations	307
§21	The solution theorem for strongly elliptic equations and examples	336
§22	The Schauder fixed point theorem and a non-linear problem	361
§23	Elliptic boundary value problems for unbounded regions	370
IV	Parabolic differential operators	376
§24	The Bochner integral	376
24.1	Pettis' theorem	376
24.2	The Bochner integral	384
§25	Distributions with values in a Hilbert space H and the space $W(0, T)$	390
§26	The existence and uniqueness of the solution of a parabolic differential	
	equation	395
§27	The regularity of solutions of the parabolic differential equation	403
27.1	An abstract regularity theorem	404
27.2	Differentiability with respect to t	411
<i>27.3</i>	Differentiability with respect to x, respectively t	414
§28	Examples	423
V	Hyperbolic differential operators	434
§29	Existence and uniqueness of the solution	434
§30	Regularity of the solutions of the hyperbolic differential equation	442
<i>30.1</i>	An abstract regularity theorem	442
30.2	Differentiability with respect to t	445
30.3	Differentiability with respect to x	447
§31	Examples	452
VI	Difference processes for the calculation of the solution of the	
	partial differential equation	462
§32	Functional analytic concepts for difference processes	462
_	Difference processes for elliptic differential equations and for the wave	
	equation	481
33.1	Some important inequalities	481
33.2	Construction of a difference process for the Dirichlet problem	484
	A difference process for the wave equation in several space variables	488
§34	Evolution equations	496
34.1	The time-independent case	498
34.2	The time-dependent case	503
34.3	Stability behaviour of the perturbed process	505
	Several step processes	507
	References	511
	Function and distribution spaces	515
	Index	516