

第2巻 目 次

第4章 積分方程式

§ 17.	逐次近似法	234
1.	連続核積分方程式	234
2.	反復核. レゾルベント	237
3.	ボルテラ積分方程式	240
4.	極性核積分方程式	242
5.	演習問題	246
§ 18.	フレドホルムの定理	247
1.	退化核積分方程式	248
2.	退化核積分方程式に対するフレドホルムの定理	250
3.	連続核積分方程式に対するフレドホルムの定理	253
4.	フレドホルムの定理の系	256
5.	極性核積分方程式に対するフレドホルムの定理	259
6.	演習問題	260
§ 19.	エルミート核積分方程式	261
1.	連続エルミート核をもつ積分作用素	261
2.	アルツェラの補題	262
3.	連続エルミート核積分方程式	264
4.	極性エルミート核積分方程式	266
§ 20.	ヒルベルト゠シュミットの定理とそれからの帰結	267
1.	連続エルミート核に対するヒルベルト=シュミットの定理	267
2.	反復核の固有関数展開	270
3.	連続エルミート核の固有関数展開	271
4.	連続エルミート核をもつ非斉次積分方程式の解	273

275

5.

5.	正定值核	275
6.	極性エルミート核積分方程式の場合へのヒルベルト=シュミット	
	の定理の拡張	276
7.	イェンチの定理	277
8.	ケロッグの方法	279
9.	マーサーの定理	282
	第5章 楕円型方程式の境界値問題	
§ 21.	固有值問題	284
1.	固有値問題の設定	284
2.	グリーン公式	285
3.	作用素Lの性質	286
4.	作用素上の固有値および固有関数の性質	287
5.	固有値および固有関数の物理的意味	291
6.	演習問題	29 2
§ 22.	スツルム゠リュービルの問題	293
1.	グリーン関数	293
2.	スツルム = リュービルの問題の積分方程式への帰着	296
3.	固有値および固有関数の性質	297
4.	固有値および固有関数の求め方	299
-	ベッセル関数	300
1.	ベッセル関数の定義と簡単な性質	300
2.	直交性	302
3.	ベッセル関数の漸化式	304
4.	ベッセル関数の零点	305
5. 6.	ベッセル方程式に対する境界値問題の固有値	307
v. 7.	非斉次ベッセル方程式の境界値問題	308
8.	ベッセル関数系の完全性	310
0.	他の円筒関数	311

	目 次	3
9.	演習問題	313
§ 24.	. 調和関数	314
1.	グリーン公式	314
2.	グリーン公式の拡張	316
3.	算術平均の定理	317
4.	最大值原理	318
5.	最大値原理の系	319
6.	調和関数の除去可能な特異点	320
7.	調和超関数	321
8.	調和関数の性質	322
9.	調和関数のリュービルの定理	323
10.	演習問題	324
§ 25.	球関数	324
1.	球関数の定義	324
2.	球関数の微分方程式	326
3.	ルジャンドル多項式	327
4.	母 関 数	329
5.	ルジャンドル陪関数	<i>331</i>
6.	球 関 数	332
7.	ラプラスの公式	334
8.	体球関数	<i>335</i>
9.	演習問題	335
§ 26.	固有値問題に対するフーリエの方法	336
1.	フーリエの方法の一般的手法	336
2.	例	338
§ 27.	ニュートン-ポテンシャル	342
1.	体ポテンシャル	342

343

2.

1重層ポテンシャル、2重層ポテンシャル

4

3.	ニュートン-ポテンシャルの物理的意味	346
4.	リャプーノフ曲面	347
5.	曲面 S 上の 1 重層, 2 重層ポテンシャルの性質	351
6.	2 重層ポテンシャルの不連続性	353
7.	1 重層ポテンシャルの法線微分の不連続性	354
8.	演習問題	356
§ 28.	ラプラス方程式,ポアッソン方程式の境界値問題	357
1.	基本的境界値問題の設定	357
2.	調和関数の無限遠における挙動	<i>35</i> 8
3.	境界値問題の解の一意性定理	359
4.	境界値問題の積分方程式への帰着	361
5.	積分方程式から導かれる諸結果	363
6.	球に対するディリクレ問題,ノイマン問題	367
e 90	ディリクレ問題のグリーン関数	369
_	グリーン関数の定義と性質	369
2.	グリーン関数の具体例(鏡映法)	372
3.	境界値問題の解のグリーン関数による表示	374
4.	ポアッソン公式	375
5.	境界値問題の積分方程式への帰着	376
6.	固有値および固有関数の性質	378
7.	演習問題	380
§ 30.		381
1.	ゾンマーフェルトの輻射条件	382
2.	斉次へルムホルツ方程式	383
3.	ポテンシャル	384
4.	極限吸収原理	387
5.	極限振幅原理	388
6.	ヘルムホルツ方程式の境界値問題	389
7.	球に対する外部境界値問題	390

	目 次	5
8.	演習問題	391
§ 31.	平面におけるラプラス方程式の境界値問題	392
1.	調和関数の無限遠における挙動	392
2.	基本的境界値問題の設定と解の一意性	393
3.	対数ポテンシャル	394
4.	境界値問題の可解性	397
5.	円に対する境界値問題の解	400
6.	ディリクレ問題のグリーン関数	402
7.	単連結領域におけるディリクレ問題の解	403
8.	演習問題	404
	第6章 混合問題	
§ 32.	フーリエの方法	407
1.	双曲型斉次方程式	407
2.	双曲型非斉次方程式	409
3.	放物型方程式	411
4.	シュレーディンガー方程式	412
5.	楕円型方程式	413
6.	例	414
7.	演習問題	420
§ 33.	双曲型方程式の混合問題	420
1.	古典解. エネルギー積分	420
2.	古典解の一意性と連続依存性	422
3.	$\mathcal{L}_{2}(G)$ で連続な関数	426
4.	広 義 解	428
5.	広義解の一意性と連続依存性	431
6.	広義解の存在	431
7.	古典解の存在	434

目 次

§ 34 .	放物型方程式の混合問題	430
1.	古典解. 最大值原理	436
2.	古典解の一意性と連続依存性	438
3.	広 義 解	440
4.	広義解の存在	441
5.	古典解の存在	442
演習問	問題の(略)解またはヒント	附— 1
参考	文 献	附-19
人名	3 表	附-24
松市	₹ 81	BH-26

