Contents

Introd	uction	1
-	er I. General representations of the solutions of second order ear differential equations of the elliptic type in two independent	
var	iables	3
	Fundamental concepts, terms and notation Second order linear elliptic differential equations in canoni-	3
	cal form. Reduction to their normal form	6
3.	Integral equations of the Volterra type in the complex domain	11
4.	The Riemann function of the equation (E_0)	16
5.	Some special examples	19
6.	Analytic solutions of the equation (E_0) . Solution of Goursat's problem	22
7.	Elementary solutions	27
	Analytic nature of the solutions of the equation (E_0)	30
	Analytic continuation of the solutions of the equation (E_0) into	32
10.	the domain of complex values of the arguments General representations of solutions of the equation (E_0) in simply-connected domains	35
11.	General representations of all the solutions of the equation (E_0) in multiply-connected domains	45
12.	Equations with real coefficients	54
	General representations of the solutions of the equation $\Delta u + \lambda^2 u = 0$	57
14.	General representations of the solutions of the equation $(1+x^2+y^2)^2\Delta u + 4n(n+1)u = 0$	61
15.	Systems of equations of the first order with analytic coefficients	64
Chapte	er II. Expansions and approximations of solutions of the equa-	
tior	$n(E_0)$	84
	Some definitions and auxiliary theorems	84
17.	Expansions of approximations of solutions of the equation (E_0) in a simply-connected domain	88
18.	Expansions of solutions of the equation (E_0) in a circle	91

x CONTENTS

19.	Addition formulae for the Riemann function and the standard elementary solution	95
20.	Expansions of solutions of the equation (E_{O}) in a series in a circular annulus	99
21.	Approximation of solutions of the equation (E_0) in a multiply-connected domain	101
22.	Applications to the theory of Bessel functions	103
	Applications to the theory of Legendre functions	110
Chapte	er III. Boundary value problems	120
24.	General statement of boundary value problems	120
25.	Solution of problem D for a simply-connected domain	122
	Criteria for solubility of problem D	133
27.	Solution of problem D for a multiply-connected domain. Green's function	137
28.	Solution of problem A in the case of a simply-connected domain	145
29.	Solution of problem A for the case of a multiply-connected domain.	154
30.	Approximation of solutions of the equation (E_0) in a closed domain. Expansion of an arbitrary function into a series of particular solutions of (E_0) on a contour	155
-	er IV. General representations of solutions of a system of ond order elliptic differential equations and their applications	159
31.	Matrix form of system (S_0) . Adjoint system. Riemann matrix function	159
32.	Elementary solutions. Analytic nature of the solutions of system (S_0)	164
33,	General representations of regular solutions of the system (S_O)	167
34.	Notes on the solution of boundary value problems for the system of equations $(\mathbf{S}_{\mathbf{O}})$	169
_	er V. General representations of solutions of a class of higher	174
ora	er elliptic differential equations and their applications	174
I.	General representations of solutions of equation (M)	175
	General representations of solutions of the equation $\Delta^n u = 0$ Elementary solutions and Green's function of the equation	175
	$\Delta^{\mathcal{N}} \iota \iota = 0$	181
37.	General representations of solutions of the equation (Mo)	184

CONTENTS xi

39. 40.	 Elementary solutions Equation with constant coefficients Particular example Expansion and approximation of solutions of the equation (M_O) 	193 196 203 209
II.	Boundary value problems	212
43.	Boundary value problem B Integral form of the boundary conditions Reduction of the boundary value problem B to integral equations	212 214 216
46.	Problem B for the equation $\Delta^n u = 0$. Uniqueness theorem A new integral equation for problem B in the general case. Solution of problem B for the equation $\Delta^n u = 0$ in the case of a circle. Green's function for a circular domain	225 225 226
Chapt	er VI. Applications to the theory of elasticity	229
I.	The plane problem of the stationary vibrations of an elastic cylinder	229
48.	General representations of solutions of the equations of the plane problem	229
49.	General expressions for the components of the displacement in terms of holomorphic functions	231
51.	Solution of boundary value problems for a circular domain Solution of boundary value problems for a circular annulus Solution of the first fundamental boundary value problem by	234 237
	the method of integral equations Solution of the second fundamental boundary value problem by the method of integral equations	239 243
II.	Bending of thin plates	247
55.	Fundamental differential equations of the bending of plates General solution of the fundamental differential equations Notes on boundary value problems	247 249 253
III.	Applications to the theory of a thin spherical shell	254
58.	System of differential equations for a thin spherical shell General solution of the system (57.15)-(57.21) Alternative expressions for the stresses, moments and dis-	255 258
	placement components General representation of the displacement components $u,\ v,$	262
61.	w in terms of analytic functions of a complex variable Solution of the boundary value problem when the shell is a spherical segment with a fixed edge	265 267

xii CONTENTS

	Shallow spherical shell	271
63.	Solution of the boundary value problem in the case of a shallow shell consisting of a spherical segment with a fixed edge	274
IV.	Application to the theory of shallow elastic shells	276
	Fundamental system of equations Reduction of equation (64.5) to a Volterra integral equation in	276
	the complex domain	277
66.	Spherical and cylindrical shells	281
	dix I. Representation of the solutions of the equation (E_0) with aid of Green's function, and their behaviour in closed domains	284
Append	dix II. Metaharmonic functions	291
I.	Some fundamental properties of metaharmonic functions	292
1.	Elementary solutions of the equation (M)	292
	Green's formulae. The Sommerfeld conditions Hyperspherical functions. Expansions of metaharmonic func-	296
	tions	302
4.	Dirichlet and Neumann problems for the equation (M)	315
II.	Some fundamental properties of solutions of equation (A)	339
5.	General representation of the solutions of equation (A)	339
6.	Riquier's boundary value problem for the equation (A)	347
Refere	ences	350

