Contents Preface xiii Acknowledgments | List of symbols xix | |--| | I
Basic notions | | A problem from differential equations An examination of the results Examples of Banach spaces Fourier series Problems | | II
Duality | | The Riesz representation theorem 28 The Hahn-Banach theorem 32 Consequences of the Hahn-Banach theorem 37 Examples of dual spaces 40 Problems 53 | | III
Linear operators | | Basic properties 56 The adjoint operator 58 Annihilators 60 | xvii | 4. The inverse operator 62 5. Operators with closed ranges 69 6. The uniform boundedness theorem 75 Problems 76 | |---| | The Riesz theory for compact operators 1. A type of integral equation 80 2. Operators of finite rank 88 3. Compact operators 92 4. The adjoint of a compact operator 100 Problems 103 | | V Fredholm operators 1. Orientation 106 2. Further properties 110 3. Perturbation theory 114 | | 3. Perturbation theory 114 4. The adjoint operator 118 5. A special case 121 6. Semi-Fredholm operators 125 Problems 130 | | VI
Spectral theory | | The spectrum and resolvent sets 132 The spectral mapping theorem 137 Operational calculus 138 Spectral projections 146 Complexification 153 The complex Hahn-Banach theorem 155 A geometric lemma 157 Problems 158 | | VII
Unbounded operators | | Unbounded Fredholm operators 161 Further properties 167 Operators with closed ranges 171 | | | The essential spectrum 178 | |--|---| | 6. | Unbounded semi-Fredholm operators 181 Problems 186 | | | 1700iems 180 | | VI | II | | Re | eflexive Banach spaces | | 2. 3. 4. 5. | Properties of reflexive spaces 189 Saturated subspaces 191 Separable spaces 195 Weak convergence 198 Examples 199 Completing a normed vector space 204 Problems 205 | | IX
Ba | anach algebras | | | Introduction 208 | | | An example 212
Commutative algebras 214 | | | Properties of maximal ideals 217 | | <i>5</i> . | Partially ordered sets 219 | | | Problems 221 | | X
Se | migroups | | | A differential equation 224 | | | Uniqueness 227
Unbounded operators 229 | | 4. | The infinitesimal generator 235 | | <i>5</i> . | An approximation theorem 240 Problems 242 | | XI
Hi | lbert space | | 1. | When is a Banach space a Hilbert space? 244 | | | Normal operators 247 Approximation by operators of finite rank 255 | 4. Total subsets 176 4. Integral operators 5. Hyponormal operators | Problems 268 | |--| | XII
Bilinear forms | | The numerical range 271 The associated operator 272 Symmetric forms 274 Closed forms 277 Closed extensions 282 Closable operators 288 Some proofs 292 Some representation theorems 296 Dissipative operators 297 The case of a line or a strip 303 Self-adjoint extensions 308 Problems 310 | | XIII
Self-adjoint operators | | Orthogonal projections 313 Square roots of operators 315 A decomposition of operators 321 Spectral resolution 324 Some consequences 330 Problems 333 | | XIV
Examples and applications | | A few remarks 336 A differential operator 336 Does A have a closed extension? 341 The closure of A 342 Another approach 347 The Fourier transform 352 Multiplication by a function 354 More general operators 360 B̄-Compactness 364 | 257 261 10. The adjoint of \bar{A} 366 11. An integral operator 368 Problems 374 Bibliography 378 Subject index 381