Contents | Preface | | | |--------------------------------|--|---------------------------------| | Introduction | | | | Part one | THE RESIDUE METHOD | | | Chapter 1 | Dini's theorem generalised | | | equation 2. General 3. Existen | alised existence theorem
ince theorems | 25
30
33 | | - | Asymptotic representations of solutions of linear differential equations with a complex parameter | | | 2. Asymp | al solutions of first-order systems ototic representations of solutions of a | 3 9 | | 3. Asymp | n of first-order equations
ototic representations of solutions of a
equation of higher order | 6376 | | J | - | | | Chapter 3 Expansion of vector-valued functions | | |--|---| | Boundary-value problems for a system of first-order equations with piece-wise coefficients Theorem on the expansion in series of residues | 84 | | of solutions of boundary-value problems with a parameter for systems of ordinary differential equations with discontinuous coefficients 3. Derivation of the solution of the spectral problem for a single equation of higher order with discontinuous coefficients | 130 | | Chapter 4 Solution of one-dimensional mixed prob-
lems for systems of equations with dis-
continuous coefficients | | | 1. Mixed problems with boundary conditions containing time derivatives | 152 | | 2. Mixed problems with boundary conditions containing no time derivatives | 178 | | 3. The mixed problem with separate variables | 198 | | Chapter 5 Residue method for solving multi-dimensional mixed problems | | | 1. Procedure for solving multi-dimensional mixed problems | 207 | | Residue method of separating variables Formula for expanding an arbitrary function in
a series of residues of a solution of a certain | 211 | | class of multi-dimensional spectral problems 4. Problems in subterranean hydromechanics | $\begin{array}{c} 220 \\ 225 \end{array}$ | | Part two THE CONTOUR-INTEGRAL METHOD | | | Chapter 6 Contour-integral method of solving one-
dimensional mixed problems for second-
order equations with discontinuous coeffi-
cients | | | 1. Equations containing only first-order time de-
rivatives | 2 37 | | 2. Asymptotic representation of the solution of a spectral problem outside a δ-neighbourhood of | ı | | the spectrum | 2 3 9 | | CONTENTS | xiii | | |--|------------|--| | Solution of the mixed problem (6.1.1) - (6.1.3) with parabolicity in the sence of Petrovskiy Expansion of an arbitrary function in a series of residues of the spectral problem: necessary | | | | and sufficient conditions for the correct formulation of problem (6.1.1) - (6.1.3) 5. Solution of mixed problems for equations containing first-order time derivatives: necessary and sufficient conditions | | | | Chapter 7 Solution of one-dimensional mixed prob-
lems for linear differential equations with
discontinuous coefficients and time-de-
pendent boundary conditions | | | | Asymptotic representation of the solution of a spectral problem outside a δ-neighbourhood Solution of mixed problems for equations containing only first-order time derivatives | 320
345 | | | Chapter 8 Solution of a multi-dimensional spectral problem for a single elliptic equation with a large complex parameter | | | | Fundamental solution and its bounds Formulae for the saltus in the potentials of a | 357 | | | single and a double layer 3. Solution of the spectral problem for a homoge- | 375 | | | neous equation and bounds for it 4. Bound for the regular part of the Green's function of the spectral problem | | | | Chapter 9 Multi-dimensional mixed problem for a parabolic equation with time-dependent boundary conditions | | | 1. Mixed problem for a homogeneous equation with 2. Mixed problem for a non-homogeneous equation with homogeneous boundary but non-homogene- 389 394 411 homogeneous initial condition 3. Actual solution of mixed problems ous initial conditions | Chapter 10 Multi-dimensional mixed problem for parabolic equations with discontinuous coefficients and time-dependent boundary conditions | | | | |---|-------------|--|--| | 1. A mixed problem and corresponding spectral | 416 | | | | problem | | | | | 2. Fundamental solution of the spectral problem and a bound for its absolute value | | | | | 3. Solution of the spectral problem and a bound for | | | | | its absolute value | 421 | | | | 4. Solution of the mixed problem for equations with | | | | | discontinuous coefficients | 428 | | | | Defended | 431 | | | | References | T 01 | | | | Index | 438 | | |