CONTENTS

			I	Page
Chapter 1 - Introduction				1
Abel convergence	•••	•••	•••	2
Cesàro convergence	•••	•••	• • •	6
The symbols O, o, and	l ~	•••	• • •	12
A necessary condition	for (C,1)	converge	nce	13
Euler-Maclaurin sum f	ormula	•••		14
Abel's inequality	•••	•••	•••	18
Chapter 2 - General summability the	ory	•••	•••	21
Basic definitions and	concepts	• • •	•••	21
The Silverman-Toeplit	-			23
Invertibility	•••	•••	• • •	37
Inclusion	•••	• • •		40
Translativity	•••		•••	41
Chapter 3 - Well-known methods of su	7	•••	45	
Nörlund and Nörlund-ty	ype transf	ormations	į.	45
Hölder means and Ces	àro means	S		46
Euler, Taylor, and Bo	rel expone	ential		
transformations	• • •	• • •	•••	54
Hausdorff means	•••	•••	•••	65
Chapter 4 - Tauberian theorems	•••	•••	•••	75
Elementary Tauberian	theorems	based up	on	
the Cesàro and Abo		_	•••	75
Tauberian theorems co	ontinued	•••	•••	83
A Tauberian theorem f	or the Eul	ler		
method $(E,1/2)$	•••	• • •	•••	92
Chapter 5 - Fourier series	•••	•••	•••	97
Basic definitions and	concepts	•••	•••	97

						Page
	L ² space	•••	• • •	•••	•••	102
	Orthogonal sy	stems	• • •	•••		103
	Gram-Schmidt	orthogon	alization	process	• • •	103
	Minimal prope	rty of Fo	urier expa	ansions	•••	108
	Complete orth	ogonal sy	stems	•••	•••	111
	Mercer's theor	rem	•••	•••	•••	112
	Dirichlet's int	egral			•••	113
	Convergence of	of Fourie	r series	•••	•••	116
	Convergence t	ests	•••	•••	• • •	117
	Cesàro summa	bility of	Fourier s	eries	• • •	120
	Abel-Poisson	summab	ility of Fo	ourier ser	ies	134
	Riemann's me	thod of s	ummation		• • •	138
	Absolute conv	ergence	•••	•••	•••	140
	Fourier transf	orms	•••	•••	•••	143
Chapter 6 - A _l	oplications of	summabil	lity to ana	alytic		
•	continuation		•••	•••	•••	151
	The Borel exp	onential	method	•••	•••	151
	The Okada the	eorem	•••	•••	•••	155
Appendix	•••		•••	•••	•••	163
Bibliography	•••	•••	•••	•••	• • •	167
Index	•••		•••	•••	•••	171
List of Symbols	•••	• • •	•••		•••	175