下巻目次

第四部 定数係数線型微分方程式の一般論概説

I 斉次方程式

		_		
§	1	前置き・・・・・・・・251	§ 9	線型微分表示式 · · · · · · 261
§	2	特性方程式・・・・・・・・251	§ 10	線型微分表示式間の演算 ・・・262
§	3	指数函数について・・・・・252	§ 11	線型微分表示式の特性多項式 ・262
§	4	対数・・・・・・・・・253	§ 12	純粋型方程式 · · · · · · · · 263
§	5	特性方程式の重複根・・・・・ 254	§ 13	混合型方程式 · · · · · · · · 263
§	6	一般解・・・・・・・・・・255	§ 14	与えられた初期条件、境界条件等
§	7	解の一意性定理・・・・・・ 257		に解を適合させること ・・・・264
§	8	対数型方程式・・・・・・・260		
		II 非斉 i	次 方 和	星式
§	15	非斉次方程式の一般解 ・・・・267	§ 19	右辺が二つの函数の一次結合であ
§	16	右辺が多項式の場合・・・・・268		る場合 ・・・・・・・・271
§	17	右辺が指数函数の場合 ・・・・269	§ 20	右辺が三角函数の場合 ・・・・271
§	1 8	右辺が多項式と指数函数の積であ	§ 21	解を付加条件に適合させること・273
		る場合 ・・・・・・・・270	, i	
		III 偏微分力	程式へ	の応用
8	22	偏微分方程式を演算子方程式に帰	§ 27	限定的な方程式をとくこと · · 287
Ü		着させること・・・・・・275	§ 28	偏微分方程式と演算子方程式の同
2	23	付加条件についての注意 281	, 20	値性の問題 · · · · · · · · · 289
•	24	正しくない解・・・・・・ 281	§ 29	偏微分方程式の解の諸例・・・290
-	25	見かけ上の矛盾の説明 · · · · 283	§ 25 § 30	
-	26	Cauchy の条件と一般条件との	8 90	偏微分方程式を演算子法で解くと
3	20		0.01	きの一般的注意 · · · · · · · 293
		同値性の問題 ・・・・・・・285	§ 31	混合問題 ・・・・・・・ 296
		第五部 積分	1、油	質 子 注
		77 11 11 11 11 11 11 11	リー供:	升 1 伍

Ⅰ 演算子値函数の積分とその応用

§ 1 クラス (*X*) の演算子値函数・・304 | § 2 積分の定義・・・・・・・・305

iv				
§ 3	3	積分の性質・・・・・・・306		分形 · · · · · · · · · · · · 312
§ 4	Į	二変数の演算子値函数・・・・308	§ 7	振動する弦の方程式への応用・・314
§ 5	5	函数の切断・・・・・・310	§ 8	無限級数と定積分の応用・・・・318
§ 6	6	対数型微分方程式のある特解の積		
		II 積 分	、が	換
			-	•
		Laplace 変換 · · · · · · · 321		
§]	10	演算子法の基礎としての Laplace		の比較 · · · · · · · · · · 323
		変換 ・・・・・・・・・321	§ 12	他の関連した万法 ・・・・・ 324
		第六部	[]	名:
		₩ 1 \ L EK	าข	安
		Ⅰ 演算子の抽象	五件粉	学的完美
		1 (第一部 I		• //
_		V. F.	•	···· -,
-		可換環・・・・・・・・325	8 3	演算于············32/
§ :	2	商体・・・・・・・・・326		
		II 局所的に	可積分	かな函数
		(第一部 VII	章への	つ補足)
§ :	1	可積分函数の合成積・・・・・329	§ 4	クラス ℋ の函数・・・・・・330
§ :	2	上に述べた合成積の性質・・・・329	§ 5	絶対連続函数・・・・・・・332
§	3	演算子としての局所的に可積分な	§ 6	局所的に可積分な函数の作る環・333
		函数 · · · · · · · · · · · 330		
		III 超	函	₩ 7
		(第一部 VII		
c	•	004		
§			8 9	上述の理論と他の超函数論との同 値性 · · · · · · · · · · · · · · 338
§ 2		超函数的演算于 · · · · · · · · · 335	8.6	超函数列 · · · · · · · · · 339
		超函数・・・・・・・・333 超函数の微分・・・・・337	_	演算子と超函数・・・・・・340
8	4	超函数の微分・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1 8 .	供好」 2. 四四数
		IV 収束性が定義		
		(第二部 Ⅰ	章への	補足)
§	1	一様収束と広義一様収束・・・・342	§ 4	収束の反復拡張・・・・・・345
§	2	抽象空間での収束性の拡張・・・343	§ 5	パナッハ (Banach) 空間としての
§	3	演算子法への応用・・・・・・344		連続有界函数の集合・・・・・346

§ 6				別の注意 ・・・・・・・349			
	の演算子の集合 ・・・・・・347						
§ 7			10	演算子値函数の極限,導函数およ			
	ではない・・・・・・・・347]		び積分 ・・・・・・・・351			
	V演算子	のべき	きん	吸数			
	(第二部 I	章への	つ 補	〕足)			
§ 1	可積分函数のべき級数・・・・355	§ 3	3	ある特殊なべき級数・・・・・358			
§ 2	さらに一般な場合・・・・・356						
	VI ラプ	ラス	ζ	変換			
	(第五部 II	章への	の有	 東			
§ 1	ラプラス変換の基本的性質・・・363	§ 4	Į.	合成積の Laplace 変換 · · · · 368			
§ 2	複素反転公式・・・・・・・364	§ 5	5	有限 Laplace 変換 · · · · · · 369			
§ 3	ポスト (Post) の反転公式・・・ 366						
	VII ヂリクレ	級数0	の-	ークラス			
	(第一部 II	章への	り有	能足)			
§ 1	序論・・・・・・・・・370	§ 5	5	一般化された Euler のガンマ函数			
§ 2	ハーシュマン・ウィッダー						
	(Hirschman-Widder) 函数··371	§ 6	5	一般化された Phragmén の不連続			
§ 3	平行移動した Hirschman-Widder			因子 · · · · · · · · · · · · · 377			
	函数の列・・・・・・・・371			有界モーメントに関する定理・・379			
§ 4	与えられた指数列によって生成さ	§ 8		合成積に関する Titchmarsh の定			
	れる整函数・・・・・・・372			理 · · · · · · · · · · 381			
	VIII 指数函	数 e	хp	$o(-\lambda s)$			
(第四部 Ι 章への補足)							
	序論・・・・・・・・・383	§	9	α>1 かつ λ が実数の場合・・393			
	α<0 の場合・・・・・・・383			演算子の実部と虚部・・・・・395			
_	α=0 の場合・・・・・・384	§ 1	1	α>1 かつ λ が複素数 (ただし			
_	0 < α < 1 の場合・・・・・・384			純虚数ではない)の場合・・・396			
§ 5	Taylor 級数展開 · · · · · · · 388	_		α≥1 かつ λ が純虚数の場合・397			
§ 6	函数 $U_{\alpha}(t)$ · · · · · · · · · 390			α=1 の場合 · · · · · · · · · 399存在範囲の表 · · · · · · · 399			
	$U_{\alpha}(t)$ の実数式 $\cdot \cdot \cdot \cdot \cdot \cdot \cdot 391$	8 1	L 4	竹仁軋団の衣・・・・・・・399			
98	実軸上の $U_{\alpha}(t)$ の性質・・・・392						

IX 演算子係数線型微分方程式の一般論							
(第四部 I, II 章への補足)							
§ 1	記号・・・・・・・・・・ 400	§ 8 対数型方程式 · · · · · · · 407					
§ 2	解の空間・・・・・・・・・400	§ 9 純粋型方程式 · · · · · · · 408					
§ 3	一次独立な解・・・・・・・・401	§ 10 混合型方程式 · · · · · · 409					
§ 4	ある解の集合・・・・・・・402	§ 11 非斉次対数型方程式···· 409					
§ 5	二つの方程式の共通解・・・・402	§ 12 非斉次純粋型方程式 · · · · · 410					
§ 6	既約多項式のべき・・・・・・403	§ 13 非斉次混合型方程式 · · · · · 412					
§ 7	演算子多項式の因数分解・・・・404						
	X 演算子多項:	武のあるクラス					
	(第四部 I:	章への補足)					
§ 1	序論・・・・・・・・・・413	§ 4 一般的方法・・・・・・・417					
§ 2	有理的因数分解・・・・・・・413	§ 5 一般的方法(続き)····· 419					
§ 3	無理的因数分解・・・・・・・414	§ 6 諸注意······ 421					
	XI 微分方程	呈式のあるクラス					
		章への補足)					
§ 1	一次独立な解の個数・・・・・423	§ 3 解の決定・・・・・・・・427					
	指数函数に関する一定理・・・・425	A V V V					
XII 偏微分方程式の斉次問題							
AII 偏似分月性氏の角状问題 (第四部 III 章への補足)							
§ 1	• •	· · · · · · · · · · · · · · · · · · ·					
§ 2		§ 4 例題·······434					
0 -							
		chmarsh の定理の簡単な証明					
	• • • • • • • • • • • • • • • • • • • •	章への補足)					
§ 1		§ 3 定理の証明・・・・・・・439					
§ 2	補題・・・・・・・・・・・438	§ 4 注意·······440					
	第七部 公	:式と数表					
I 特 殊 函 数							
1.		3. Bessel 函数 · · · · · · · · · 441					
2.	誤差函数 ・・・・・・・・441						

	II	演算子法	その語	者公式	• • • •		• • • • •	441
	III	電気工学	学への	の応用				
1.	回路の方程式 ・・・・・・・	. 446	3.	簡単な国	四端子回	路網と	その行列の記	長
2 .	定常電流 ・・・・・・・・・	· 446						447
	IV	涵	数	表				
1.	Euler のガンマ函数 $\Gamma(\lambda)$ ・・	· 448	4.	Bessel	函数 J_1 (λ) ·		449
2.	誤差函数 erf λ · · · · · · · · · · · · · · · · · · ·	. 448	5 .	函数 J_0	$(i\lambda)$ \succeq	$-iJ_1($	$(i\lambda)$ · · · ·	45 0
3.	Bessel 函数 $J_0(\lambda)$ · · · · · · ·	. 449						
	問題の解答・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・							451
	文献表 · · · · · · · · ·							470
	追加文献表 · · · · · ·							473
	索引·····							475