CONTENTS

Prefa	Preface	
Conte	ents of Volume II	xv
Intro	duction	xvii
I. A	symptotic Expansions	
1.1.	The Order Symbols O and o	1
1.2.	Definition of an Asymptotic Expansion	2
1.3.	Elementary Properties of Asymptotic Series	3
1.4.	Watson's Lemma	4
II. 7	The Gamma Function and Related Functions	
2.1.	Definitions and Elementary Properties	8
2.2.	Analytic Continuation of $\Gamma(z)$	10
2.3.	Multiplication Formula	11
2.4.	The Logarithmic Derivative of the Gamma Function	12
2.5.	Integral Representations for $\psi(z)$ and $\ln \Gamma(z)$	13
2.6.	The Beta Function and Related Functions	15
2.7.	Contour Integral Representations for Gamma and Beta Functions	16
2.8.	Bernoulli Polynomials and Numbers	18
2.9.	The D and δ Operators	24
2.10.	Power Series and Other Expansions	26
2.11.	Asymptotic Expansions	31
III.	Hypergeometric Functions	
3.1.	Elementary Hypergeometric Series	38
3.2.	A Generalization of the $_2F_1$	41
3.3.	Convergence of the $_pF_q$ Series	43
3.4.	Elementary Relations	44
3.5.	The Confluence Principle	48
3.6.	Integral Representations	57
3.7.	Differential Equations for the ₂ F ₁	64
3.8.	Kummer's Solutions	67
3.9.	Analytic Continuation	69

xii CONTENTS

3.10.	The Complete Solution	72
	Kummer-Type Relations for the Logarithmic Solutions	85
	Quadratic Transformations	92
	The $_{p+1}F_p$ for Special Values of the Argument	99
IV.	Confluent Hypergeometric Functions	
4.1.	Introduction	115
4.2.	Integral Representations	115
4.3.	Elementary Relations for the Confluent Functions	117
4.4.	Confluent Differential Equation	119
4.5.	The Complete Solution	121
4.6.	Kummer-Type Relations for the Logarithmic Solutions	124
4.7.	Asymptotic Expansions for Large z	127
4.8.	Asymptotic Behavior for Large Parameters and Variable	129
4.9.	Other Notations and Related Functions	134
۷. ⁻	The Generalized Hypergeometric Function and the	
	G-Function	
5.1.	The $_pF_q$ Differential Equation	136
5.2.	The G-Function	143
5.3.	Analytic Continuation of $G_{p,p}^{m,n}(z)$	148
5.4.	Elementary Properties of the G-Function	149
5.5.	Multiplication Theorems	152
5.6.	Integrals Involving G-Functions	157
5.7.	Asymptotic Expansion of $G_{\nu,q}^{q,1}(z)$ and $G_{\nu,q}^{q,0}(z)$ for Large z	178
5.8.	Differential Equation for $G_{p,q}^{m,n}(z)$	181
5.9.	Series of G-Functions	183
5.10.	Asymptotic Expansions of $G_{p,q}^{m,n}(z)$	189
	Asymptotic Expansions of $_{p}F_{q}(z)$ for Large z	195
VI.	Identification of the ${}_{p}F_{q}$ and G-Functions with the	
	Special Functions of Mathematical Physics	
6.1.	Introduction	209
6.2.	Named Special Functions Expressed as $_{x}F_{q}$'s	209
6.3.	The $_vF_q$ Expressed as a Named Function	224
6.4.	Named Functions Expressed in Terms of the G-Function	225
6.5.	The G-Function Expressed as a Named Function	230
VII.	Asymptotic Expansions of $_{p}F_{q}$ for Large Parameters	
	• •	235
7.1.	Introduction The F	235
7.2.	The ${}_2F_1$	233 242
7.3.	Some Generalizations of the ₂ F ₁ Formulas	242 247
7.4.	Extended Jacobi Polynomials	241

	CONTENTS	xiii
VIII.	. Orthogonal Polynomials	
8.1.	Orthogonal Properties	267
8.2.	Jacobi Polynomials	274
8.3.	Expansion of Functions in Series of Jacobi Polynomials	283
8.4.	Evaluation and Estimation of the Coefficients in the Expansion of a	
•••	Given Function $f(x)$ in Series of Jacobi Polynomials	286
8.5.	Chebyshev Polynomials	296
8.6.	Differential and Integral Properties of Expansions in Series of	
	Chebyshev Polynomials of the First Kind	314
8.7.	A Nesting Procedure for the Computation of Expansions in Series of	
	Functions Where the Functions Satisfy Linear Finite Difference Equations	325
Bibl	iography	330
Nota	tion Index	339
Subje	ect Index	344