CONTENTS

Pre	FACE				. ,
Spe	CIAL ABRIDGED NOTATIONS				. vi
Int	RODUCTION				
Cha	apter One. Introductory Treatment of Dimension	s Or	e and	l Two)
§1.	The Characteristic Function				
§2.	Systems of Dimension Unity. Direct Control				
§3.	System of Dimension Unity. Indirect Control				. :
§4.	System of Order Tive		•		. 1
Ch	apter Two. Indirect Controls				
§1.	Vectors and Matrices				. 1′
§2.	Indirect Control. General Type .				. 18
§3.	Comparison with a Recent Result of Yacubovich .				. 22
§4.	On the Utilization of Certain Complex Coordinate Systems				. 23
§5.	Special Cases				
Cha	apter Three. Indirect Controls (Continued)				
§1.	Invariance under Change of Coordinates				. 27
§2.	Reduction of the Number of Conditions on the Control Par	ramet	ers		. 28
§3.	Lurie's Method and a Variant				. 31
§4.	Application to Systems of Order Two				. 33
Cha	apter Four. Direct Controls. Linearization Multi	ple F	eedba'	ıck	
§1.					. 39
§2.					. 41
§3.		rol			. 42
§4.					. 43
§5.					. 46
§6.					. 48
§7.	, ,				. 50
§8.		tic			
	Root (Kenneth Meyer)				. 51
§9.					
	'Characteristic Roots (Kenneth Meyer)				. 55
810					56

CONTENTS

Chapter Five.	Systems Represented by a Set of Equations of	
	Higher Order	

§1.	Generalities		•						61
§2.	A Digression on Linear Systems								62
§3.	Indirect Control								64
§4.	Indirect Control: An Example .								67
§5.	Direct Control								70
Ü									
Cha	apter Six. Discontinuous Cha	aract	eristi	cs					
§1.	Continuous Approximation of Disc	contin	uous C	hara	cteris	tics			72
§2.	Direct Discussion of Discontinuities								73
§3.	Some Examples								79
§4.	Special Switching Lines								84
§5.	Multiple Feedback Switching Line								85
§6.	Complementary Remarks								86
U	•								
		•							
Cha	apter Seven. Some Recent Re	esult	s of V	'. M	. Po	pov			
§ 1.	Generalities. The Theorems of Popo	ov							87
§2.	Preliminary Properties								91
§3.	Proof of Popov's First Theorem								93
§4.	The Generalized Liapunov Function	n of F	opov						98
§5.	Proop of Popov's Second Theorem								100
§6.	Comparisons								101
§7.	On the Function $G(z)$ as Transfer F								104
§8.	Direct Control								105
§9.	Conclusion							-	105
Ch	apter Eight. Some Further R	ecen	t Con	trib	ution	S			
§1.	Controllability and Observability								107
§2.	Reduction of the System to One w	ith a	Compl	letely	Cont	rollab	le		
	Pair (A, b) and Completely Obse	ervabl	e Pair	(c', A)	l) .				109
§3.	A Special Form for Systems with C	Comp	letely (Contr	ollab	le			
	Pair (A, b)								113
§4.	Main Lemma (Yacubovich and Ka	alman	ı) .						114
§5.	Liapunov-Popov Function and Po	pov I	nequal	ity					118
§6.	Fundamental Theorem								119
§7.	A Recent Result of Morozan .								121
§8.	Return to the Standard Example								122
§9.	Direct Control								123
§10.	Résumé (Indirect Control: $\gamma > 0$)								124
§11.	Complement on the Finiteness of t	he Ra	itio $\varphi(a)$	σ)/σ					125

CONTENTS

Chapter Nine. Miscellaneous Complements

§ 1.	The Jorda	n Norm	al For	m for	Real	or C	omple	x Ma	trices					128
	On a Dete													
	On Liapui													
§4.	Liapunov and Stability								•				•	136
App	endix A: A	n Appli	cation	of M	ultipl	e Feed	dback	Cont	rol					139
App	endix B: A	n Exam	ple fro	m the	The	ory of	Nucl	ear Po	wer F	Reacto	ors			
• •		Cenneth										•	•	142
Віві	IOGRAPHY												•	144
Inde	EX .													149