CONTENTS

Снарте	r 1. Linear Differential Equations
1–1	Existence theorem for linear differential equations
1-2	Solution of the homogeneous equation with constant coefficients . 2
1-3	Linear differential equations with constant
	coefficients; nonhomogeneous case
1-4	Simultaneous linear differential equations
1-5	Simultaneous linear equations with constant coefficients 11
1–6	Integrodifferential equations
1-7	Complex functions of a real variable
1-8	Differentiation and integration of complex-valued functions of t . 26
1-9	Complex solutions of linear differential equations
	Forced vibrations
	The LRC circuit
	Response to unit function and other discontinuous inputs 44
	Impulse function and other generalized functions
1-14	Application of generalized functions to linear differential equations 56
Снарті	ER 2. BASIC CONCEPTS OF SYSTEMS ANALYSIS
2-1	Operators
2-2	Linear Operators
2-3	Operators associated with linear differential equations
2-4	Operators associated with simultaneous linear differential equations 73
2-5	Superposition principle and interchange of operations
2-6	Translation and stationary systems
2-7	Duhamel's integral
2-8	Weighting function, impulse response, convolution 89
2 - 9	Characteristic function, transfer function, frequency response
	function
2-10	Stability
Снарт	ER 3. ANALYTIC FUNCTIONS OF A COMPLEX VARIABLE
3–1	Functions of a complex variable. Limits and continuity 108
3–2	10
3-3	Integrals

viii contents

3-4	Analytic functions. Cauchy-Riemann equations	115
3-5	The functions $\log z$, a^z , z^a , $\sin^{-1} z$, $\cos^{-1} z$	121
3-6	Integrals of analytic functions. Cauchy integral theorem	125
3–7	Cauchy's integral formula	129
3-8	Power series as analytic functions	132
3–9	Power series expansion of general analytic function	135
3–10	Power series in positive and negative powers, Laurent expansion.	139
3-11	Isolated singularities of an analytic function. Zeros and poles .	142
3-12	The complex number ∞	146
3-13	Residues	150
3-14	Residue at infinity	154
3-15	Logarithmic residues; argument principle	156
3-16	Partial fraction expansion of rational functions	158
Cxx A Dmy	er 4. Fourier Series and Finite Fourier Transform	
CHAPTI		
4-1	Response to a sum of sinusoidal terms	163
4-2	Periodic inputs. Fourier series	164
4–3	Examples of Fourier series	166
4-4	Uniform convergence	169
4-5	Uniqueness theorem for Fourier series	170
4-6	Uniformly convergent Fourier series	173
4-7	Convergence of Fourier series at a point	175
4-8	Convergence in the mean	180
4-9	Differentiation and integration of Fourier series	181
4-10	Change of period	184
	Complex form of Fourier series	185
4-12	Orthogonal functions	187
	Solution of differential equations by Fourier series	189
4-14	The finite Fourier transform	190
4 - 15	The truncated Laplace transform as an aid to computation of	
	finite Fourier transforms	192
4-16	Properties of the finite Fourier transform	198
4-17	Convolution	201
4-18	Special convolutions	203
4-19	The inverse finite Fourier transform	208
4-20	Finite Fourier transforms of generalized functions	211
4-21	Application of finite Fourier transforms to linear differential	
	equations	215
4-22	Proof of Theorem 23	219
4-23	The weighting function	221
4-24	Response to periodic generalized functions	224

CONTENTS	1X

	Systems of differential equations	22
	Integrodifferential equations	
T 21	bystems analysis for periodic inputs	20
HAPT	er 5. The Fourier Integral and Fourier Transform	
5–1	Introduction of the Fourier integral	23
5-2	Basic properties of the Fourier integral	2 3
5 - 3	Fourier transforms	2 3
5-4	Validity of the formulas	24
5-5	Examples of Fourier integrals	24
5-6	Uniform convergence for improper integrals	24
5–7	Preliminary lemmas	24
5-8	Proof of Theorem 2	24
5-9	Uniqueness theorem	25
5-10	Properties of the Fourier transform	25
5-11	Convolution	25
	Special convolutions	2 6
5-13	The inverse Fourier transform	27
5–14	Evaluation of inverse Fourier transforms by residues	27
	Proof of Theorem 18	27
5-16	Fourier transforms of generalized functions	27
	Application of Fourier transforms to linear differential equations	28
	The weighting function	29
	Response to generalized functions as inputs	29
	Application of Fourier transforms to simultaneous differential	
0 -0	equations	29
5-21	Applications of Fourier transforms to integrodifferential equations	29
	Systems analysis by Fourier transforms	29
HAPT	er 6. The Laplace Transform	
6-1	Introduction of the Laplace transform	30
6-2	Relations between the Laplace transform and the Fourier transform	30
6-3	Examples of Laplace transforms	30
6-4	Theory of the Laplace transform	30
6-5	Properties of the Laplace transform	31
6-6	The Laplace transform as an analytic function	31
6-7	Inverse transform	31
6-8	Evaluation of inverse transforms by residues	32
6-9	Laplace transforms analytic at infinity	32
6-10		33
	Initial- and final-value theorems	33
0-11	immai- and imai-value meorems	აა

X CONTENTS

6–12	Convolution	340
	Special convolutions	343
6-14	Laplace transforms of generalized functions	35
6 - 15	Application of Laplace transforms to differential equations	350
	Examples	360
6-17	The equation for forced vibrations	364
6-18	Weighting function. Response to generalized functions	36'
6–19	Application of Laplace transforms to simultaneous differential	9.0
6 90	equations	36
	Application of Laplace transforms to integrodifferential equations	37
	System analysis by means of Laplace transforms	37
	The z-transform	37
	Application of the z-transform to difference equations	38
	Sampled-data systems	38
6-25	Hilbert transforms	39
Снарти	er 7. Stability	
7-1	Introduction	40
7 - 2	Signs of the coefficients	40
7-3	Direct method	40
7-4	Hurwitz-Routh criterion	40
7-5	Proof of Hurwitz-Routh criterion	40
7-6	Nyquist criterion. Polynomial case	41
7–7	Stability determined from graph of arg $V(i\omega)$	41
7–8	Nyquist criterion. Rational function case	41
7-9	Root-locus method	42
	Properties of the root locus	42
Снарті	er 8. Time-variant Linear Systems	
8–1	The linear differential equation of order n ; the Wronskian	43
8–2	The generalized weighting function; the kernel function	43
8-3	Green's function; impulse response	44
8–4	Adjoint equation	44
8-5	Solution of linear differential equations by infinite series	45
8-6	Equations with coefficients asymptotic to constants	45
8-7	Perturbation method	46
8-8	Equations with coefficients which are piecewise constant	46
8–9	Application of Laplace transforms	47
	Equations with periodic coefficients	47
	Evaluation of characteristic exponents	47
	The equation of second order with periodic coefficients	48
0-14	THE ENGINEER OF DECOME OF GET WITH POLICEM COOMISSION CO	-0

	CONTENTS	xi
8-13 Matrix	formulation of differential equations	490
8-14 Stability	y theorems	496
8-15 Applica	tion of Hermitian matrices	499
8-16 Respons	se to bounded inputs	503
8-17 Operation	onal methods	515
Appendix I.	The Operational Calculus of Mikusiński	529
APPENDIX II.	RECAPITULATION OF PRINCIPAL TABLES	541
APPENDIX III.	GLOSSARY OF SYMBOLS	565
INDEX		569

.