Contents

Preface		xi
1		
Ordinary	Differential Equations	1
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.11	Simultaneous Linear Differential Equations 18 Particular Solutions by Variation of Parameters 24 Reduction of Order 28 Determination of Constants 30	
2.1 2.2	An introductory Example 53 Definition and Existence of Laplace Transforms 55	53

vi	Conte	nts

2.3	Properties of Laplace Transforms 58	
2.4	The Inverse Transform 62	
2.5	The Convolution 63	
2.6	Singularity Functions 65	
2.7	Use of Table of Transforms 67	
2.8	Applications to Linear Differential Equations with	
	Constant Coefficients 72	
2.9	The Gamma Function 76	
3		
Numeric	cal Methods for Solving Ordinary Differential Equations	93
3.1	Introduction 93	
	Use of Taylor Series 94	
	The Adams Method 96	
	The Modified Adams Method 100	
3.5	The Runge-Kutta Method 102	
	Picard's Method 105	
3.7	Extrapolation with Differences 107	
4		
4		
Series S	olutions of Differential Equations: Special Functions	118
4.1	Properties of Power Series 118	
4.2	Illustrative Examples 122	
4.3	Singular Points of Linear Second-Order Differential	
	Equations 126	
4.4	The Method of Frobenius 128	
4.5	Treatment of Exceptional Cases 134	
4.6	Example of an Exceptional Case 136	
4.7	A Particular Class of Equations 138	
4.8	Bessel Functions 141	
4.9	Properties of Bessel Functions 147	
4.10	1	
4.11	· · · · · · · · · · · · · · · · · · ·	
4.12		
4.13		
4.14	Series Solutions Valid for Large Values of x 163	

A	Š
•	,

	5		
Bo	undary	v-Value Problems and Characteristic-Function Representations	186
	5.1	Introduction 186	
	5.2	The Rotating String 188	
	5.3	The Rotating Shaft 192	
	5.4	Buckling of Long Columns Under Axial Loads 195	
	5.5	The Method of Stodola and Vianello 197	
	5.6	Orthogonality of Characteristic Functions 203	
	5.7	Expansion of Arbitrary Functions in Series of Orthogonal Functions 207	
	5.8	Boundary-Value Problems Involving Nonhomogeneous	
		Differential Equations 211	
	5.9	Convergence of the Method of Stodola and Vianello 212	
	5.10	Fourier Sine Series and Cosine Series 214	
	5.11	Complete Fourier Series 219	
	5.12		
	5.13	Fourier-Bessel Series 226	
		Legendre Series 230	
	5.15	The Fourier Integral 234	
	6		
Ve	ctor A	nalysis	269
•	6.1	Elementary Properties of Vectors 269	
	6.2	The Scalar Product of Two Vectors 271	
	6.3	The Vector Product of Two Vectors 273	
	6.4	Multiple Products 275	
	6.5	Differentiation of Vectors 277	
	6.6	Geometry of a Space Curve 278	
	6.7	The Gradient Vector 281	
	6.8	The Vector Operator ∇ 283	
	6.9	Differentiation Formulas 284	
	6.10	Line Integrals 287	
	6.11	The Potential Function 291	
	6.12	Surface Integrals 294	
	6.13	Interpretation of Divergence. The Divergence Theorem 297	
	6.14	Green's Theorem 301	
	6.15	Interpretation of Curl. Laplace's Equation 302	
	6.16	Stokes's Theorem 303	

6.17 Orthogonal Curvilinear Coordinates 306

	6.18 6.19 6.20	Special Coordinate Systems 311 Application to Two-Dimensional Incompressible Fluid Flow 313 Compressible Ideal Fluid Flow 316	
	7		
To	pics in	Higher-Dimensional Calculus	342
	7.1	Partial Differentiation. Chain Rules 342	
	7.2	Implicit Functions. Jacobian Determinants 347	
	7.3	Functional Dependence 350	
	7.4	Jacobians and Curvilinear Coordinates. Change of Variables in Integrals 352	
	7.5	Taylor Series 354	
	7.6	Maxima and Minima 356	
	7.7	Constraints and Lagrange Multipliers 357	
	7.8	Calculus of Variations 360	
	7.9	Differentiation of Integrals Involving a Parameter 364	
	7.10	Newton's Iterative Method 367	
	8		
Par	rtial D	differential Equations	384
	8.1	Definitions and Examples 384	
	8.2	The Quasi-Linear Equation of First Order 387	
	8.3	Special Devices. Initial Conditions 392	
	8.4	Linear and Quasi-Linear Equations of Second Order 396	
	8.5	Special Linear Equations of Second Order, with Constant Coefficients 397	
	8.6	Other Linear Equations 400	
	8.7	Characteristics of Linear First-Order Equations 403	
	8.8	Characteristics of Linear Second-Order Equations 408	
	8.9	Singular Curves on Integral Surfaces 414	
	8.10	Remarks on Linear Second-Order Initial-Value Problems 417	
	8.11	The Characteristics of a Particular Quasi-Linear Problem 417	
	9		
Sol	utions	of Partial Differential Equations of Mathematical Physics	439
	9.1	Introduction 439	
	9.2	Heat Flow 441	
	9.3	Steady-State Temperature Distribution in a Rectangular Plate 443	
	9.4	Steady-State Temperature Distribution in a Circular Annulus 446	

Contents

	9.5	Poisson's Integral 450	
	9.6	Axisymmetrical Temperature Distribution in a Solid Sphere 451	
	9.7	Temperature Distribution in a Rectangular Parallelepiped 453	
	9.8	Ideal Fluid Flow about a Sphere 456	
	9.9	The Wave Equation. Vibration of a Circular Membrane 459	
	9.10	The Heat-Flow Equation. Heat Flow in a Rod 461	
	9.11	Duhamel's Superposition Integral 463	
	9.12	Traveling Waves 467	
	9.13	The Pulsating Cylinder 470	
	9.14	Examples of the Use of Fourier Integrals 473	
	9.15	Laplace Transform Methods 477	
,	9.16	Application of the Laplace Transform to the Telegraph	
		Equations for a Long Line 480	
	9.17	Nonhomogeneous Conditions. The Method of Variation of	
		Parameters 484	
	9.18	Formulation of Problems 490	
	9.19	Supersonic Flow of Ideal Compressible Fluid Past an Obstacle 495	
	40		
	10		
Fur	ections	of a Complex Variable	539
	10.1	Introduction. The Complex Variable 539	
	10.2	Elementary Functions of a Complex Variable 541	
	10.3	Other Elementary Functions 544	
	10.4	Analytic Functions of a Complex Variable 550	
	10.5	Line Integrals of Complex Functions 554	
	10.6	Cauchy's Integral Formula 560	
	10.7	Taylor Series 561	
	10.8	Laurent Series 563	
	10.9	Singularities of Analytic Functions 567	
	10.10	Singularities at Infinity 575	
	10.11	Significance of Singularities 578	
	10.12	Residues 580	
	10.13	Evaluation of Real Definite Integrals 583	
	10.14	Theorems on Limiting Contours 589	
	10.15	Indented Contours 592	
	10.16	Integrals Involving Branch Points 595	
	11		
Apı		ons of Analytic Function Theory	622
	•	₹ · · · · · · · · · · · · · · · · · · ·	

Introduction 622

Inversion of Laplace Transforms 622

11.1

11.2

11.3	Inversion of Laplace Transforms with Branch Points. The Loop	
	Integral 625	
11.4	Conformal Mapping 628	
11.5	Applications to Two-Dimensional Fluid Flow 632	'
11.6	Basic Flows 634	
11.7	Other Applications of Conformal Mapping 638	
11.8	The Schwarz-Christoffel Transformation 641	
11.9	Green's Functions and the Dirichlet Problem 652	
11.10	The Use of Conformal Mapping 658	
11.11	Other Two-Dimensional Green's Functions 661	
Answers to	o Problems	703
Index		72

