Contents

CHAPTER 0.		
Mathematic	al preliminaries	1
0.1.	Banach spaces and examples	1
0.2.	Linear transformations	3
0.3.	Fixed point theorems	4
CHAPTER I.		
General pro	perties of differential equations	12
I.1.	Existence	12
I.2.	Continuation of solutions	16
1.3.	Uniqueness and continuity properties	18
I.4.	Continuous dependence and stability	25
I.5.	Extension of the concept of a differential equation	28
I.6.	Differential inequalities	30
I.7.	Autonomous systems—generalities	37
I.8.	Autonomous systems—limit sets, invariant sets	46
I.9.	Remarks and suggestions for further study	49
CHAPTER II.		
Two dimens	sional systems	51
II.1.	Planar two dimensional systems—the Poincaré-	
	Bendixson theory	51
II.2.	Differential systems on a torus	64
II.3.	Remarks and suggestions for further study	76
CHAPTER III		
Linear syste	ems and linearization	78
TTT 1	General linear systems	79

xiv CONTENTS

III.2.	Stability of linear and perturbed linear systems	83
III.3.	$n^{ m th}$ Order scalar equations	89
III.4.	Linear systems with constant coefficients	93
III.5.	Two dimensional linear autonomous systems	101
III.6.	The saddle point property	106
III.7.	Linear periodic systems	117
III.8.	Hill's equation	121
III.9.	Reciprocal systems	131
III.10.	Canonical systems	136
III.11.	Remarks and suggestions for further study	142
CHAPTER IV.		
Perturbation	ns of noncritical linear systems	144
IV.1.	Nonhomogeneous linear systems	145
IV.2.	Weakly nonlinear equations—noncritical case	154
IV.3.	The general saddle point property	156
IV.4.	More general systems	162
IV.5.	The Duffing equation with large damping and large	
	foreing	168
CHAPTER V.	latory phenomena and the method of averaging	171
7		
	Conservative systems	172
V.2.		180
V.3.		186
V.4.	1	194
V.5.	Duffing's equation with small damping and small harmonic forcing	195
V.6.	The subharmonic of order 3 for Duffing's equation	202
V.7.	Damped excited pendulum with oscillating support	204
V.8.	Exercises	206
V.9.	Remarks and suggestions for further study	208
CHAPTER VI.		
Behavior ne	ar a periodic orbit	209
VI.1.	A local coordinate system about an invariant closed curve	210

(CONTENTS	XV
(CONTENTS	X

VI.2.	Stability of a periodic orbit	215
VI.3.	VI.3. Sufficient conditions for orbital stability in two	
	dimensions	220
VI.4.	Autonomous perturbations	222
VI.5.	Remarks and suggestions for further study	224
CHAPTER VI	ı.	
Integral ma	mifolds of equations with a small parameter	225
VII.1.	Methods of determining integral manifolds	227
VII.2.	Statement of results	231
VII.3.	A "nonhomogeneous linear" system	234
VII.4.	The mapping principle	24 0
VII.5.	Proof of Theorem 2.1	242
VII.6.	Stability of the perturbed manifold	243
VII.7.	Applications	243
VII.8.	Exercises	247
VII.9.	Remarks and suggestions for further study	250
CHAPTER VI	II.	
Periodic sys	stems with a small parameter	252
VIII.1.	A special system of equations	253
VIII.2.	Almost linear systems	262
VIII.3.	Periodic solutions of perturbed autonomous equations	274
VIII.4.	Remarks and suggestions for further study	276
CHAPTER IX		
Alternative	problems for the solution of functional equations	27 8
IX.1.	Equivalent equations	279
IX.2.	A generalization	282
· IX.3.	Alternative problems	283
IX.4.	Alternative problems for periodic solutions	284
IX.5.	The Perron-Lettenmeyer theorem	287
IX.6.	Remarks and suggestions for further study	289

xvi CONTENTS

CH	AT	THE PERSON NAMED OF	T .	T.
Tin /	4 1		н.	

The direct method of Liapunov				
X.1.	X.1. Sufficient conditions for stability and instability in			
	autonomous systems	291		
X.2.	Circuits containing Esaki diodes	30 0		
X.3.	Sufficient conditions for stability in nonautonomous			
	systems	304		
X.4.	The converse theorems for asymptotic stability	307		
X.5.	Implications of asymptotic stability	311		
X.6.	Remarks and suggestions for further study	313		
APPENDIX				
Almost peri	odic functions	315		
References		32 5		
Index		331		

