

目 次

第3章 特殊な型の超関数

§	12. なめらかな曲面上に集まっている超関数	213
	1. 微分形式に関する予備知識 2. 微分形式ω 3. 超	
	関数 $\delta(P)$ 4. Green の公式 5. 微分形式 $\omega_{\scriptscriptstyle k}(\varphi)$ と	
	超関数 $\delta^{(k)}(P)$ 6 . $\delta^{(k)}(P)$ に関する恒等式	
	7. $\delta^{(k)}(a(x)P)$ に関する恒等式 8. 多重層 9. 超	
	関数 $\delta(P_1, \dots, P_k)$ と $\partial^m \delta(P_1, \dots, P_k) / \partial P_1^{\alpha_1} \dots \partial P_k^{\alpha_n}$	
;	13. 2 次形式に関連した超関数	252
	1 . 超関数 $\delta_1^{(k)}(P)$ と $\delta_2^{(k)}(P)$ の定義 2 . 超関数 P_+^{λ}	
	3. 複素係数をもつ 2 次形式に対応する超関数 P ¹ 4. 超	
	関数 $(P+i0)$ と $(P-i0)$ 5. 線型微分方程式の基本解	
	6. 超関数 (P+i0)^ と (P-i0)^ の Fourier 変換	
	7. Bessel 関数と結びついた超関数 8. 超関数 $(c^2+P+$	
	$i0$) $^{\lambda}$ と $(c^2+P-i0)^{\lambda}$ の Fourier 変換 9. 超関数 $(c^2+P)^{\lambda}_+$	
	と $(c^2+P)^{\frac{1}{n}}$ の Fourier 変換 10 . 整数値の λ に対する	
	超関数 $(c^2+P)^{\lambda}_+/\Gamma(\lambda+1)$ と $(c_2+P)^{\lambda}/\Gamma(\lambda+1)$ の Fourier	
	変換。超関数 $\delta(c^2+P)$ およびその微分の Fourier 変換	
r_{i}	14. 同次超関数	306
,	1. はじめに 2. 多変数の正値同次関数 3n 次	
	の同次超関数 $4.$ $(-n-m)$ 次の同次超関数 $5.$ 超	
	関数 rlf (f は単位球面上で与えられた超関数)	
8	15. 2 乗の関数に対応する超関数	324
J	1. 可約特異点の定義 2. 曲面 $G(x_1, \dots, x_n) = 0$ が 1 階	
	の点だけからなる場合の超関数 G^{λ} 3. 曲面 $G(x_1, \dots, x_n)$	
	$=0$ が 2 より大きくない階数の点からなる場合の超関数 G^{λ}	
	4 . 一般の場合の超関数 $G^{\lambda}(x_1,, x_n)$ 5. 無限回微分可	
	·· 成少勿可少但因数 · (wi) · ,wn/ · · · · · · · · · · · · · · · · · · ·	

能な関数の等高面 $G(x_1, ..., x_n) = c$ 上の積分

第 4 章 複素空間上の超関数

16. 複素変数の超関数343
$1. 変数 z と ar{z} 2. 複素変数の同次関数 3. 同次$
超関数 $z^{\lambda ar{z}^{\mu}}$ 4. 超関数 z^{-k-1} とその微分 5. 同件
超関数 6. 同次超関数の一意性に関する定理 7. 基
超関数と超関数の Fourier 変換 8. $f(z)$ が有理型関数
のときの超関数 $f^{\lambda}(z)ar{f}^{\mu}(z)$
§ 17. 複素多変数の超関数······361
1 . 超関数 $\delta(P)$ と $\delta^{(k,l)}(P)$ 2. 超関数 $G^{\lambda}ar{G}^{\mu}$
3. 同次超関数 4. 同伴超関数 5. 同次関数の留数
6. $(-n, -n)$ 次の同次超関数 7. P が退化しない 2
次形式のときの超関数 $P^{\lambda}ar{P}^{\mu}$ 8. 複素領域における線型
微分方程式の基本解 9. 超関数 $G^{\lambda} ar{G}^{\mu}$ (一般の場合)
10. 複素多変数の有理型関数に対応する超関数
定義と公式
第1章 超関数の定義とその簡単な性質389
第2章 超関数の Fourier 変換407
第3章 特殊な型の超関数408
第4章 複素空間上の超関数419
40.4
参考文献
原著の第2巻から第5巻までの目次430
あとがき435
1.0
歩 己1~2

