

CONTENTS

INTRODUCTION

1.	Vari	ational Inequalities: Existence and Regularity	4
	1.	An example, 4	
	2.	General theory of existence and uniqueness, 9	
	3.	$W^{2,p}$ regularity for the obstacle problem, 19	
	4.	$W^{2,\infty}$ regularity for the obstacle problem, 31	
	5.	The filtration problem, 47	
	6.	The elastic-plastic torsion problem: $W^{2, p}$ regularity, 55	
	7.	The elastic-plastic torsion problem: $W^{2,\infty}$ regularity, 65	
	8.	Parabolic variational inequalities, 72	
	9.	The Stefan problem, 82	
	10.	Variational inequalities for the biharmonic operator, 90	
	11.	Thin obstacles, 105	
	12.	Bibliographical remarks, 125	
2.	Vari	iational Inequalities: Analysis of the Free Boundary	128
	1.	The Hodograph-Legendre transformation, 128	
	2.	Regularity in two dimensions, 138	
	3.	General properties of the free boundary, 154	
	4.	Convexity properties of the coincidence set, 163	
	5.	Regularity of the free boundary when MD(Λ) is positive, 170	
	6.	The free boundary for the filtration problem, 177	
	7.	Regularity of the free boundary for the elastic-plastic	
		torsion problem, 193	
	8.	The shape of the free boundary for the elastic-plastic	
		torsion problem, 203	
	9.	The free boundary for the Stefan problem, 225	
	10.	Stability of free boundaries, 250	
	11.	Free boundaries with singularities, 256	
	12.	Bibliographical remarks, 263	

viii **CONTENTS**

3.	Jets and Cavities		265
	1.	Examples of jets and cavities, 266	

- The variational problem, 271 2.
- 3. Regularity and nondegeneracy, 275
- 4. Regularity of the free boundary, 284
- 5. The bounded gradient lemma and the nonoscillation lemma, 285
- 6. Convergence of free boundaries, 288
- 7. Symmetric rearrangements, 293
- 8. Axially symmetric jet flows, 297
- 9. The free boundary is a curve x = k(y), 309
- 10. Monotonicity and uniqueness, 318
- 11. The smooth-fit theorems, 324
- Existence and uniqueness for axially symmetric jets, 335 12.
- Convexity of the free boundary, 339 13.
- 14. The plane symmetric jet flow, 344
- 15. Asymmetric jet flows, 345
- 16. The free boundary for the asymmetric case, 353
- 17. Monotonicity, continuity, and existence for the asymmetric jet problem, 358

417

- 18. Jets with gravity, 366
- 19. The continuous fit for the gravity case, 379
- 20. Axially symmetric finite cavities, 391
- Axially symmetric infinite cavities, 400 21.
- 22. Bibliographical remarks, 415

4. **Variational Problems with Potentials**

- 1. Self-gravitating axisymmetric rotating fluids, 418
- 2. Estimates of gravitational potentials, 426
- 3. Existence of solutions, 433
- 4. Rapidly rotating fluids, 443
- 5. The rings of rotating fluids, 456
- Vortex rings, 470 6.
- 7. Energy identities and potential estimates, 478
- 8. Existence of vortex rings, 487
- 9. A capacity estimate, 501
- 10. Asymptotic estimates for vortex rings, 507
- 11. The plasma problem: existence of solutions, 520
- 12. The free boundary for the plasma problem, 529
- 13. Asymptotic estimates for the plasma problem, 531
- 14. A variational approach to convex plasmas, 549
- 15. The Thomas-Fermi model, 563
- 16. Existence of solution for the Thomas-Fermi model, 568
- Regularity of the free boundary for the Thomas-Fermi model, 576 17.
- 18. Bibliographical remarks, 586

1	v
	_

CONTENTS

10. 11.

5.	Som	e Free-boundary Problems Not in Variational Form	589
	1.	The porous-medium equation: existence and uniqueness, 589	
	2.	Estimates on the expansion of gas, 604	
	3.	Hölder continuity of the solution, 617	
	4.	Growth and Hölder continuity of the free boundary, 627	
	5.	The differential equation on the free boundary, 636	
	6.	The general two-dimensional filtration problem: existence, 650	
	7.	Regularity of the free boundary, 657	
	8.	Uniqueness for the filtration problem, 668	
	9.	The filtration problem in n dimensions, 674	
		<u>-</u>	

References 695
Index 709

The two-phase Stefan problem, 684 Bibliographical remarks, 693