

Table of Contents

Preface

Chapter	1: Almost Periodic Functions	1
1.	Introduction	1
2.	Definition	1
3.	The hull	1
4.	The space AP(C)	5
5.	The Bohr definition	5 7
6.	Derivatives of AP functions	10
7.	A pointwise definition	11
8.	Notes	14
Chapter	2: Uniformly Almost Periodic families	16
1.	Introduction	16
2.	U.A.P. families	17
3.	Translation functions	17
4.	Compactness in uniform convergence on campacta	19
5.	Compactness in uniform norm	20
6.	Bochner version of u.a.p.	22
7.	Families indexed by E ⁿ	24
8.	Composition of AP functions	27
9.	Notes	27
Chapter	3: The Fourier Series Theory	29
1.	Introduction	29
2.	Mean values	30
3.	Bessel's inequality	33
4.	Mean convergence	36
5.	Parseval's equation	38
6.	* *	45
7.	Differentiation and Integration of Fourier Series	50
8.	Differentiability of $a(f,\lambda,x)$	52
9.	Notes	54
Chapter	4: Modules and Exponents	56
1.	Introduction	56
2.	Translation sets	56
3.	Kronecker's Theorem	58
4.	Module containment	60
5.	Convolution by Fourier transforms	65
6.	Functions with bounded exponents	67
7.	Functions with discrete exponents	68
8.	Functions with exponents bounded away from zero	72
9.	Notes	75

Chapter	5: Linear Constant Coefficient Equations	77
1.	Introduction	77
2.	Existence of minimum norm solutions	77
3.	The differential equation $y' = f(t)$	78
4.	The equation $x' = Ax$	80
5.	The nth order scalar equations	81
6.	The differential inequalities	83
7.	_	85
8.	-	85
9.	<u>.</u>	87
	The vector equation again	89
	Norms of mappings	92
12.		94
		24
Chapter	6: Linear almost periodic equations	97
1.	Introduction	97
2.	A counterexample	97
3.	Bounded solutions	98
4.	Favard's Theorem	99
5.	Scalar equations	102
6.	-	107
7.		112
8.		114
9.		115
10.		118
Chapter	7: Exponential Dichotomy and Kinematic similarity	121
1.	Introduction	121
2.	Exponential dichotomy	121
3.		123
4.		126
5.	_	128
6.	• "	134
7.		135
8.		140
Chapter	8: Fixed Point Methods	142
_		142
1.		142
2.	± ±	144
3.	<u> </u>	148
4.		151
5.		
6.	Notes	153

Chapter	9: Asymptotic almost periodic functions and other weaker conditions	154
1. 2. 3. 4. 5. 6. 7.	Asymptotic almost periodicity and solutions Alternate definitions An application Extension of almost periodic sequences Separation by functionals	154 154 155 160 163 166 169
Chapter	10: Separated solutions	170
	The unique case Semi-separated solutions A generalization	170 170 171 175 178
Chapter	11: Stable solutions	179
1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	Strong stability Uniform stability Stability of linear systems Quasi-stability in the large Total stability Uniform asymptotic stability Periodic equations Perturbations of stable systems	179 179 182 190 196 199 201 205 209 212 213
1. 2. 3. 4. 5. 6.	Introduction Periodic equations Differential equations on a torus Ultimate boundedness Monotone f(x,t) Module containment	217 217 218 223 228 231 232
Chapter	13: Second order equations	234
1. 2. 3. 4. 5. 6.	The maximum principle Uniqueness by Lypanov function Uniqueness by comparison A forced Lienard equation Other Lienard equations An application of column dominance	234 237 246 251 258 259 262

VIII

Chapter	14: Averaging	265
1.	Introduction	265
2.	The averaged equation	265
3.	Transformation Lemmas	266
.1 .	The main theorem	274
5.	van der Pol example	278
6.	-	279
7.		281
8.		284
Chapter	15: The Literature	286
1.	Citations	286
2.	Bibliography	288
Chapter	16: Index	333
1.	Notations	333
2	Conoral index	334

