Contents | | eword
face | xi
xiii | |-----|---|------------| | | PART 1 | | | | DISCRETE DETERMINISTIC PROCESSES | | | | DISCRETE DETERMINISTIC PROCESSES | | | Ch | apter 1 The Principles of Dynamic Programming | | | 1.1 | General Description of the Method | 3 | | 1.2 | Example of the General Method | 4 | | 1.3 | Sequential Decision Problems and the Principle of Optimality | 5 | | 1.4 | An Example of Application of the Principle of Optimality | 6 | | 1.5 | Remarks | 8 | | Ch | apter 2 Processes with Bounded Horizon | | | 2.1 | Definition of a Discrete Process | 9 | | 2.2 | Statement of the Problem | 10 | | 2.3 | Application of the Principle of Optimality | 10 | | 2.4 | Direct Derivation of the Recurrence Equation | 11 | | 2.5 | Analog Interpretation of the Recurrence Equation | 12 | | 2.6 | Practical Application of the Recurrence Equation | 13 | | 2.7 | Additive Constraints | 16 | | 2.8 | Sensitivity of the Solution | 19 | | Cha | apter 3 Processes with Infinite or Unspecified Horizon | | | 3.1 | Processes with Infinite Horizon | 21 | | 3.2 | Processes with Unspecified Horizon | 21 | | 3.3 | Structure and Stability of a System with Infinite Horizon | 22 | | 3.4 | Calculation of the Solution of the Optimality Equation | 24 | | Cha | apter 4 Practical Solution of the Optimal Recurrence Relation | | | 4.1 | Search for an Optimum | 30 | | 4.2 | The Problem of Dimensionality | 31 | | 4.3 | Domain of Definition of the Return Function | 33 | | 4.4 | Solution by Successive Approximations | 37 | | vi CONTENTS | | |---|------------------------------| | 4.5 The Use of Legendre Polynomials 4.6 Linear Systems with Quadratic Costs 4.7 Linearization 4.8 Reduction of the Dimensionality | 40
46
52
52 | | PART 2 | | | DISCRETE RANDOM PROCESSES | | | Chapter 5 General Theory | | | 5.1 Optimal Control of Stochastic Processes 5.2 Processes with Bounded Horizon and Measurable State 5.3 Processes with Random Horizon and Measurable State 5.4 Processes with a State Not Completely Measurable 5.5 Conclusions | 57
59
64
66
69 | | Chapter 6 Processes with Discrete States | | | 6.1 Fundamentals 6.2 Terminal Problems 6.3 Optimization of a Return Function 6.4 Discrete Stochastic Processes with Discrete States Which Are No Completely Measurable | 71
74
79
ot 87 | | PART 3 | | | NUMERICAL SYNTHESIS OF THE OPTIMAL CONTROLLER FOR A LINEAR PROCESS | Ĺ | | Chapter 7 General Discussion of the Problem | | | 7.1 Definition of the Problem 7.2 Mathematical Models of the Units 7.3 The Canonical Model 7.4 The System Objective 7.5 Problem Types | 95
96
97
101
102 | | Chapter 8 Numerical Optimal Control of a Measurable Deterministic Process | | | 8.1 The Effect of Terminal Constraints 8.2 Minimum-Time Regulation with Bounded Energy 8.3 Problems with Quadratic Constraints 8.4 The Case of an Infinite Horizon | 105
110
113
117 | | | CONTENTS | vii | |--|----------------|--| | Chapter 9 Numerical Optimal Control of a Stochas | tic Process | | | 9.1 Completely Measurable Processes 9.2 The Case of Possible Missed Controls 9.3 Processes with a State Not Completely Measurable 9.4 Conclusions | | 120
122
125
131 | | PART 4 | | | | CONTINUOUS PROCESSES | | | | Chapter 10 Continuous Deterministic Processes | | | | 10.1 A Continuous Process as the Limit of a Discrete Proce 10.2 Establishment of the Functional Optimality Equations 10.3 Special Case of Unconstrained Control 10.4 Application to the Calculus of Variations 10.5 The Maximum Principle 10.6 Practical Solution | SS | 137
138
141
145
146
149 | | Chapter 11 Continuous Stochastic Processes | | | | 11.1 Continuous Stochastic Processes with Continuous State 11.2 Linear Systems with Quadratic Criteria 11.3 Continuous Systems with Discrete States | es | 151
153
155 | | PART 5 | | | | APPLICATIONS | | | | Problem 1 Introductory Example | | | | P1.1 Problem A P1.2 Problem B P1.3 Problem C P1.4 Conclusion | | 163
167
168
170 | | Problem 2 Minimum Use of Control Effort in a First | t-Order System | | | P2.1 Statement of the Problem P2.2 The Unconstrained Case P2.3 The Constrained Case P2.4 Passage to a Continuous System | | 171
172
174
180 | | | | | ## viii CONTENTS | Prob | em 3 Optimal Tabulation of Functions | | |--------------------------------------|--|--| | | Statement of the Problem Flow Chart for Evaluation of the Function Equation Formulation Case of a Quadratic Criterion | 183
184
185
186 | | Prob | lem 4 Regulation of Angular Position with Minimization of a Quadratic Criterion | | | P4.1
P4.2
P4.3
P4.4
P4.5 | Statement of the Problem Formulation of the Equations Minimum-Time Control The Optimal Recurrence Equation Example of an Optimal Trajectory | 189
190
191
193
197 | | P4.6 Prob | Minimum-Time Control with Restricted Energy lem 5 Control of a Stochastic System | 199 | | P5.3 | Statement of the Problem Stochastic Model of the System Optimal Recurrence Equation with Terminal Cost Solution of the Optimality Equation Minimum-Time Criterion | 201
202
203
204
206 | | Prol | olem 6 Minimum-Time Depth Change of a Submersible Ve | hicle | | P6.2
P6.3
P6.4
P6.5 | Statement of the Problem Formulation of the Model Formulation of the Criterion Function The Recurrence Equation Introduction of Constraints Flow Chart of the Controller | 209
210
211
212
213
215 | | Pro | olem 7 Optimal Interception | | | P7.2
P7.3 | Statement of the Problem Establishment of the Mathematical Model The Equation of Optimality Discrete State Space | 217
219
219
221 | | | | CONTENTS | ix | |-------------|---|----------|-----| | Prot | olem 8 Control of a Continuous Process | | | | P8.1 | Statement of the Problem | | 225 | | P8.2 | The Optimality Equation | | 226 | | P8.3 | Search for the Optimal Policy | | 226 | | P8.4 | Study of a Bang-Bang Law | | 227 | | P8.5 | | | 229 | | P8.6 | Synthesis of the Controller | | 230 | | App | endix Filtering | | | | A .1 | The Filtering and Prediction Problems | | 233 | | A.2 | Estimation of the State of a Discrete Process | | 237 | | A.3 | Estimation of the State of a Continuous Process | | 244 | | A.4 | Conclusions | | 247 | | Refe | erences | | 249 | | Inde: | x | | 251 |