Contents

Prefa	reface	
PAI	RT I ALGEBRAIC PROPERTIES	
Cha	apter 1 Introduction	3
A.	The Taylor Series Problem	3
В.	Padé Approximants	4
	Solution for the Padé Approximants	8
	The Padé Table	9
E.	An Application of Padé Approximants to Physics	10
Cha	apter 2 The Structure of the Padé Table	13
A.	The C Table	13
В.	Block Structure of the Padé Table	19
C.	Existence of Infinitely Many Padé Approximants	24
Cha	apter 3 Identities	26
A.	Two-Term Identities	26
В.	Cross Ratios	28
	Three-Term Identities	30
	Five-Term Identities	33
	Three-Term Identity Coefficients from Padé Coefficients	34 36
	F. Compact Expressions for Padé Approximants	
G.	G. Connection between Padé Tables of $f(x)$ and $(1 + \alpha x)f(x)$	

VI

Cha	pter 4	Relation between Padé Approximants	
	•	and Continued Fractions	42
A.	Fundar	nental Recursion Formulas	42
В.	Equival	lence Transformations	44
C.	Conver	gence Theorems	47
D.	Relatio	n of Continued Fractions to Taylor Series	55
		n of Continued Fractions to Padé Approximants	57
F.	Bigradi	ents	58
Cha	pter 5	Gauss's Hypergeometric Function	62
A.	Gauss's	Continued Fraction	62
В.	Special	Cases	64
		ent Hypergeometric Function	68
D.	Bessel I	Functions	70
E.	Diverge	ent Series Derived by Confluence	71
Cha	pter 6	Recursion Relations	74
A.	Classifi	cation of Problems	74
В.	The Va	lue Problem	75
C.	The Co	efficient Problem	77
D.	The Ro	ot Problem	80
Cha	pter 7	Relation between Orthogonal Polynomials	
		and Padé Approximants	85
A.	_	onality Properties of Padé Denominators	. 85
В.	_	les from the Classical Orthogonal Polynomial Systems	87
C.		al Properties	89
D.		position of the Quadratic Form into a Sum of Squares	90
E.	The Eig	genvalue Distribution for the Quadratic Form	93
Cha	pter 8	The N-Point Padé Approximant	100
A.	Genera	l Padé Fitting Problem	100
В.		inantal Solution	103
C.		Reciprocal Difference Method	105
D.		hogonality Property	106
E.		h Root Fitting Problem	107
F.	Acceler	ation of the Convergence of a Sequence	108

CONTENTS	vii
Chapter 9 Invariance Properties	110
A. Argument Transformations	110
B. Value Transformations	112
C. The Riemann Sphere	113
PART II CONVERGENCE THEORY	
Chapter 10 Numerical Examples	121
A. Regular Points	121
B. Singular Points	123
C. Asymptotic Series	127
D. The Location of Cuts	128
E. Noisy Series	131
Chapter 11 Convergence of Vertical and Horizontal Sequences	133
A. Convergence on the Sphere	133
B. Functions with Only Polar Singularities	134
C. Functions with Polar Singularities and	
"Smooth" Nonpolar Singularity	143
D. Several "Smooth" Boundary Circle Singularities	147
E. "Smooth" Entire Functions	149
F. Nonvertical Sequences G. General Entire Functions	154
H. The N-Point Padé Approximants	155 160
Chapter 12 Convergence of General Sequences	166
A. Continuity on the Sphere	166
B. Convergence Uniqueness Theorem	170
C. Convergence of General Sequences	173
Chapter 13 The Distribution of Poles and Zeros	186
A. The Baker-Gammel-Wills Conjecture	188
B. Extensions of the Conjectures	188
Chapter 14 Convergence in Hausdorff Measure	193
A. Hausdorff Measure	193

viii	CONTENTS
B. Error Formula C. Convergence Theorems	195 197
D. Convergence in the Mean on the Riemann SphereE. Examples	203 204
PART III SERIES OF STIELTJES AND PÓLYA	
Chapter 15 Series of Stieltjes, Inequalities	209
A. Series of Stieltjes	209
B. Inequalities	213
Chapter 16 Series of Stieltjes, Convergence	218
A. Existence of a Limit	218
B. Uniqueness of the Limit	219
C. Stieltjes Integral Representation D. The Hamburger Problem	229 230
Chapter 17 Series of Stieltjes, Inclusion Regions	234
A. Nonzero Radius of Convergence	234
B. The N-Point Problem	244
C. The Hamburger Problem D. Tschebycheff's Inequalities	246 248
D. 1schebychen's inequalities	240
Chapter 18 Pólya Frequency Series	252
A. Characterization of Pólya Frequency Series	253
B. Convergence Properties	255
PART IV GENERALIZATIONS AND APPLICATIONS	
Chapter 19 Generalized Padé Approximants	263
Chapter 20 Series with Infinite Coefficients	267
Chapter 21 Matrix Padé Approximants	270

CONTENTS		ix
Chapter 22	Critical Phenomena	274
Chapter 23	Scattering Physics	280
Chapter 24	Electrical Circuits and Several Other Applications	288
REFERENC	CES	295
Index		303