CONTENTS

Chapter	VI. THE SPECTRAL ANALYSIS OF UNITARY AND SELF-ADJOINT OPERATORS		1
58	The Trigonometric Moment Problem	1	
	Analytic Functions with Values in a Half-plane	1 5	
	The Theorem of Bochner	11	
	The Resolution of the Identity	14	
	The Integral Representation of a Unitary Operator	16	
	Operators Represented by Stieltjes Integrals	22	
	The Integral Representation of a Group of Unitary		
0	Operators	29	
65.	The Integral Representation of the Resolvent of a		
	Self-Adjoint Operator	31	
66.	The Integral Representation of Self-Adjoint Operators	36	
	The Cayley Transform	42	
	The Spectra of Self-Adjoint and Unitary Operators	46	
	The Simple Spectrum	50	
	Spectral Types	56	
	The Multiple Spectrum	59	
	The Canonical Form of a Self-Adjoint Operator with		
•	a Spectrum of Finite Multiplicity	60	
73.	Some Remarks about Unitary Invariants of Self-Adjoint		
	Operators	65	
74.	Some Remarks about Functions of Self-Adjoint		
	Operators	74	
75.	Commutative Operators	76	
	Rings of Bounded Self-Adjoint Operators	80	
	Examples	84	
Chapter	VII. THEORY OF EXTENSIONS OF SYMMETRIC OPERATORS		91
78.	Deficiency Indices	91	
	Further Remarks on the Cayley Transform	94	
	The Neumann Formulas	97	
81.	Simple Symmetric Operators	101	
	The Structure of Maximal Operators	103	
83.	Spectra of Self-Adjoint Extensions of Symmetric		
	Operators	107	
84.	The Formula of Krein for the Resolvent of the Self-		
	Adjoint Extensions of a Symmetric Operator	110	
85.	Semi-Bounded Operators	114	
	Some Remarks about the General Theory of		
	Extensions	119	

CONTENTS

Appendix	I. GENERALIZED EXTENSIONS AND		
	GENERALIZED SPECTRAL FUNCTIONS OF		
	SYMMETRIC OPERATORS		121
1	Generalized Resolution of the Identity. Naimark's		
1.	Theorem	121	
2	Self-Adjoint Extensions to Larger Spaces and	121	
۷.		126	
2	Spectral Functions of Symmetric Operators	120	
3.	Spectral Functions of Symmetric Operators and	122	
4	Generalized Resolvents	133	
	The Formula of Krein for Generalized Resolvents	139	
5.	Quasi-Self-Adjoint Extensions and the Characteristic		
	Function of a Symmetric Operator	146	
Annondix	II. DIFFERENTIAL OPERATORS		162
	Self-Adjoint Differential Expressions	162	102
	Regular Differential Operators	166	
		100	
3.	Self-Adjoint Extensions of a Regular Differential	1.60	
	Operator	168	
	Singular Differential Operators	170	
5.	Self-Adjoint Extensions of a Singular Differential		
	Operator	174	
	The Resolvents of Self-Adjoint Extensions	177	
7.	Inversion Formulas Related to Differential		
	Operators of the Second Order	186	
8.	Generalization to Differential Operators of		
•	Arbitrary Order	200	
9.	Examples	204	
	•	,	
INDEX			216
			/ I N