TABLE OF CONTENTS | | | Page | | | |------------------------|---|------------|--|--| | CHAPTE | R I. BASIC DEFINITIONS AND PROPERTIES | 1 | | | | 1. | Introduction | 1 | | | | 2. | Semidynamical Systems: Definitions and | _ | | | | 3. | Conventions
A Glimpse of Things to Come; An Example from a | 2 | | | | 201 | Function Space | 5 | | | | 4.
5. | Solutions
Critical and Danielia Dainte | 7
10 | | | | 6. | Critical and Periodic Points
Classification of Positive Orbits | | | | | 7. | Discrete Semidynamical Systems | | | | | 8. | Local Semidynamical Systems; Reparametrization | | | | | 9. | Exercises | 25
31 | | | | 10. | Notes and Comments | 33 | | | | CHAPTE | R II. INVARIANCE, LIMIT SETS, AND STABILITY | 35 | | | | 1. | Introduction | 35 | | | | 2. | Invariance | 36 | | | | 3. | Limit Sets: The Generalized Invariance Principle | 39 | | | | 4. | Minimality | 45 | | | | 5. | Prolongations and Stability of Compact Sets | 52 | | | | 6. | Attraction: Asymptotic Stability of Compact Sets | 56 | | | | 7. | Continuity of the Hull and Limit Set Maps in | () | | | | 0 | Metric Spaces | 62 | | | | | Lyapunov Functions: The Invariance Principle | 77 | | | | | From Stability to Chaos: A Simple Example Exercises | 80 | | | | | Notes and Comments | 92
95 | | | | | Notes and comments | 33 | | | | CHAPTE | R III. MOTIONS IN MÉTRIC SPACE | 98 | | | | 1. | Introduction | 98 | | | | 2. | Lyapunov Stable Motions | 99 | | | | | Recurrent Motions | 105 | | | | 4. | Almost Periodic Motions | 111 | | | | 5. | Asymptotically Stable Motions | 121 | | | | 6. | Periodic Solutions of an Ordinary Differential | 125 | | | | 7 | Equation | 125 | | | | 7.
8. | Exercises Notes and Comments | 131
133 | | | | ٠. | Notes and Comments | 133 | | | | CHAPTE | R IV. NONAUTONOMOUS ORDINARY DIFFERENTIAL | | | | | | EQUATIONS | 137 | | | | - | T., | 1 7 5 | | | | Program and | Introduction Construction of the Skew Braduct Semidumenical | 137 | | | | 2. | Construction of the Skew Product Semidynamical System | 140 | | | | 3. | Compactness of the Space ${\mathscr F}$ | 151 | | | | 4 | The Invariance Principle for Ordinary | 131 | | | | 5 9 27 × | Differential Equations | 155 | | | | 5. | Limiting Equations and Stability | 173 | | | | | Page | |---|---| | CHAPTER IV (cont.) | | | 6. Differential Equations without Uniqueness7. Volterra Integral Equations8. Exercises9. Notes and Comments | 189
192
202
205 | | CHAPTER V. SEMIDYNAMICAL SYSTEMS IN BANACH SPACE | 209 | | Introduction Nonlinear Semigroups and Their Generators The Generalized Domain for Accretive Operators Precompactness of Positive Orbits Solution of the Cauchy Problem Structure of Positive Limit Sets for Contraction | 209
212
225
231
244 | | Semigroups 7. Exercises 8. Appendix: Proofs of Theorems 2.4 and 2.16 9. Notes and Comments | 253
270
273
279 | | CHAPTER VI. FUNCTIONAL DIFFERENTIAL EQUATIONS | 283 | | Why Hereditary Dependence, Some Examples from
Biology, Mechanics, and Electronics Definitions and Notation: Functional Differential | 283 | | Equations with Finite or Infinite Delay. The Initial Function Space 3. Existence of Solutions of Retarded Functional | 285 | | Equations | 292 | | Some Remarks on the Semidynamical System Defined by the Solution to an Autonomous Retarded Functional Differential Equation: The Invariance Principle and Stability Some Examples of Stability of RFDE's Remarks on the Asymptotic Behavior of Nonautonomous Retarded Functional Differential | 303
312 | | Equations 7. Critical Points and Periodic Solutions of | 326 | | Autonomous Retarded Functional Differential
Equations
8. Neutral Functional Differential Equations | 330
337 | | A Flip-Flop Circuit Characterized by a NFDE -
The Stability of Solutions | 351 | | 10. Exercises
11. Notes and Comments | 360
365 | | CHAPTER VII. STOCHASTIC DYNAMICAL SYSTEMS | 369 | | Introduction The Space of Probability Measures Markov Transition Operators and the Semidynamical | 369
370 | | System 4. Properties of Positive Limit Sets 5. Critical Points for Markov Processes 6. Stochastic Differential Equations 7. The Invariance Principle for Markov Processes 8. Exercises 9. Notes and Comments | 371
374
378
380
384
389
392 | ## Table of Contents | | | Page | |--|---|---| | CHAPTER VIII. WEAK SEMI
PROCESSES | DYNAMICAL SYSTEMS AND | 393 | | Introduction Weak Semidynamica Compact Processes Uniform Processes Solutions of Nona | | 393
395
400
410 | | Equations Revis | ited - A Compact Process ve Equation - A Uniform | 411 | | Process 7. Exercises 8. Notes and Comment | | 412
422
423 | | APPENDIX A | | 424 | | O. Preliminaries 1. Commonly Used Sym 2. Nets 3. Uniform Topologie 4. Compactness 5. Linear Spaces 6. Duality 7. Hilbert Spaces 8. Vector Valued Int 9. Sobolev Spaces 10. Convexity 11. Fixed Point Theor 12. Almost Periodicity 13. Differential Inequal | s
egration
ems | 424
425
427
428
429
431
433
435
436
438
438 | | APPENDIX B | | 440 | | Expectation Convergence of Ran | ses; Martingales and
s | 440
441
443
443 | | REFERENCES | | | | INDEX OF TERMS | | 465 | | INDEX OF SYMBOLS | | 473 |