Contents

Fore	WORD			XI
I.	GLIMPSES OF THE HISTORY OF MATHEMATICS		ųž.	1
	1. The first numbers			1
	2. The continuation of the sequence of numbers			3
	3. The infinite			4
提	4. The irrational			6
	5. The infinitely small			8
	6. The evolution of the calculus			11
	7. Some later developments			13
II.	Number Systems			18
	1. The natural numbers			18
	2. The integers			19
	3. The rational numbers			20
	4. The real numbers			21
	5. Complex numbers			28
III.	Linear Algebra			33
	1. Vectors, vector space			33
0	2. Dependence, dimension, basis			35
	3. Subspace			36
	4. The scalar product			37
	5. Linear transformation, matrix	89		38
	6. Multiplication of linear transformations	,,	*	41
	7. Multiplication of matrices			42
	8. Row matrices, column matrices			44
	9. Rank of a matrix	79 93	50 50 500	46
	10. Determinants		70	46
	11. Solution of a non-homogeneous system of equations	24	34	48
	12. Solution of a homogeneous system of equations		32	50
	13. Latent roots	*	额	51
	14. Latent roots and characteristic vectors of symmetric			52
	(real) matrices			53
**	15. Transformation of the main axes of symmetric matrices	段		56
IV.	Analytical Geometry		•	59
	1. Coordinates	£2	76	59
	2. The geometry of the plane and of the straight line			62
	3. Homogeneous coordinates	級		67
	4. Circle and sphere		B	72

	5. Conic sections	77
	6. Curves of the second degree	83
	7. Polar theory for conic sections	85
	8. Surfaces of the second degree	88
	9. Investigation of surfaces of the second degree	91
	10. Polar theory of quadratic surfaces	94
V.	Analysis	96
	DIFFERENTIAL AND INTEGRAL CALCULUS	96
	1. The concept of function - Interval - Neighbourhood	96
	2. The concept of limit	98
	3. Algebra of limits	100
	4. The concept of continuity	102
	5. Theorem on continuous functions – Examples of continuous functions	103
	6. Derivative	103
	7. First derivative - Continuity and differentiability - Higher derivatives	105
	8. Algebra of derivatives	107
	9. The concept of arc length of a circle - Continuity of the trigonometric	
	functions - Trigonometric inequalities	108
	10. The derivatives of the trigonometric functions	111
	11. Limit properties of composite functions	112
	12. Differentiation of a composite function – The chain rule	113
	13. Rolle's theorem and the mean value theorem of differential calculus	115
	14. Generalized mean value theorem	118
	15. Extreme values	119
	16. Points of inflection	122
	17. Primitive functions	124
	18. Change of variables - Differentials - Integration by parts	124
	19. The concept of area	126
	20. Fundamental theorem of integral calculus	128
	21. Properties of definite integrals	130
	22. Method of integration by parts and method of substitution	132
	23. Mean value theorem	133
	24. Logarithmic function	133
	25. Inverse function	136
	26. The exponential function	137
	27. The general power and the general exponential function	139
	28. Some logarithmic and exponential limits	140
	29. The general logarithm	142
	30. The cyclometric functions	142
	31. Leibniz's formula	145
	32. The hyperbolic functions	146
	33. The primitives of a rational function – Partial fractions	147
	34. The primitives of $\cos^n x$ and $\sin^n x$ (n is an integer)	151
	35. The primitives of a rational function of $\sin x$ and $\cos x$	153
	36. The primitives of irrational algebraic functions	154
	37. Improper integrals	157
	FUNCTIONS OF TWO VARIABLES - PARTIAL DIFFERENTIATION	159
	38. The concept of function	159
	39. The concept of limit	160
	40. Continuity	161
	41. Partial differentiation	162

	CONTENTS	vii
	42. Partial derivatives of the second order	164
	43. Composite functions – Total differential	165
	44. Change of the independent variables	167
	45. Functions of more than two variables	168
	46. Extreme values of functions of two variables	168
	47. Taylor's formula for a function of two variables - The mean value	
	theorem	169
	48. Sufficient conditions for extreme values of functions of two variables	171
	Multiple Integrals	174
	49. The concept of content—Double integral	174
	50. Properties of integrals	175
	51. Repeated integrals with constant limits	176
	52. Extension to more general regions of integration	177
	53. General curvilinear coordinates	179
	54. Transformation of double integrals	180
	55. Cylindrical coordinates	183
	56. Triple integral	184
	57. Spherical coordinates	186
	58. Area of a plain region in polar coordinates	187
	59. Volume of solids of revolution	188
	60. Area of a curved surface in rectangular coordinates	190
	61. Area of a curved surface in cylindrical and spherical coordinates	191
	62. Area of surfaces of revolution	192
	63. Mass and density of surfaces and solids	193
	64. Static moment, centre of mass, moment of inertia	195
VI.	SEQUENCES AND SERIES	201
	1. Sequence of numbers	201
	2. Convergence	201
	3. Divergence	204
	4. Evaluation of limits	204
	5. Monotonic sequences	207
	6. Cauchy's convergence theorem	208
	7. Series	209
	8. Uniform convergence	224
	9. The Fourier series	228
VII.	THEORY OF FUNCTIONS	237
	1. Complex numbers	237
	2. Functions	244
	3. Integration theorems	250
	4. Infinite series	260
	5. Singular points	273
	6. Conformal mapping	290
	7. Infinite products	301
VIII.	Ordinary Differential Equations	306
	1. Introductory	306
	2. Differential equations of the first order	307
	3. Linear differential equations of the first order	308

viii

CONTENTS

	4. Some remarks about the theory	313
	5. Linear differential equations of higher order	317
	6. Linear homogeneous equations with constant coefficients	322
	7. Non-homogeneous differential equations	328
	8. Non-linear differential equations	335
	9. Coupled or simultaneous differential equations	342
IX.	SPECIAL FUNCTIONS	351
		251
	1. Gamma-function and beta-function	351
	2. Ordinary differential equations of the second order with variable coefficients	365
	3. Hypergeometric functions	378
	4. Legendre functions	387
	5. Bessel functions 6. Seberical harmonics	409
	6. Spherical harmonics	107
X.	Vector Analysis	415
	Vectors in Space	415
	1. Vectors in three-dimensional space	415
	2. Applications to differential geometry	420
	Theory of Vector Fields	438
	3. The differential operator ♥	438
	4. Integral theorems	448
	POTENTIALS OF MASS DISTRIBUTIONS	456
	5. Poles and dipoles	456
	6. Line and surface distributions	458
	7. Volume distributions	463
	Dyads and Tensors	465
	8. Dyads	465
	9. The deformation tensor	466
	10. Gauss's theorem for dyads	467
	11. The stress tensor	468
XI.	PARTIAL DIFFERENTIAL EQUATIONS	470
	1. Equations of the first order	470
	2. The system of quasi-linear hyperbolic equations of the second order	478
	3. Linear equations with constant coefficients	487
	4. Approximation methods for elliptic differential equations	514
VII	Numerical Analysis	524
XII.		524
	 Introduction Interpolation 	532
	2. Interpolation 3. Numerical integration of differential equations	567
	4. The determination of roots of equations	578
886	5. Computations in linear systems	592

6. More on the approximation of functions by polynomials	609
7. Numerical integration of partial differential equations	614
8. Algol 60	624
XIII. THE LAPLACE TRANSFORM	634
1. Theory of the Laplace transform	634
2. Applications of the Laplace transform	661
3. Fourier transforms	689
4. Tables	691
5. Addendum	694
XIV. PROBABILITY AND STATISTICS	696
1. Introduction	696
2. Fundamental concepts and axioms of probability theory	697
3. Probability distributions	703
4. Mathematical expectation and moments	721
5. Characteristic functions and limit theorems	733
6. The normal distribution	739
7. Theory of estimation	745
8. The theory of testing hypotheses	752
9. Confidence limits	764
10. Theory of linear hypotheses	769
11. Subjects which have not been treated	772
References	773
INDEX	777
	773
OTHER TITLES IN THE SERIES	

CONTENTS