	\$. ≠ ₹	

Contents

Translator's Foreword	X
Preface	xi
CHAPTER I	
Convergence, J. Gerretsen and H. Rau	1
1. Introduction	1
2. Sequences	2
3. Monotone Sequences and Limits of Indeterminacy	7
4. Metric Spaces	11
5. Filters	12
6. Uniform Spaces	16
CHAPTER 2	
Functions, H. Freudenthal and H. Wäsche	22
1. Continuity	23
2. Differentiability	28
3. Higher Derivatives	35
4. Exponential Functions	38
5. Functions in <i>n</i> -Dimensional Space	42
CHAPTER 3	
Integral and Measure, E. Schieferdecker and K. Strehlke	53
1. Elementary Theory of Integration	53
2. Abstract Measure and Its Extension	66
3. Distributions	78
CHAPTER 3a	
Fundamental Concepts of the Theory of Probability, L. Schmetterer	
and R. Stender	89

vi CONTENTS

1. The Concept of Probability	89
2. The Distribution Function of a Random Variable	
3. Independence	93 98
4. Expectation	99
5. Characteristic Functions	103
6. Sums of Independent Random Variables	107
7. Conditional Probability and Conditional Expectation	108
8. Some Limit Theorems	114
CHAPTER 4	
Alternating Differential Forms, F. Sommer, B. Reimann, and	
H. Rau	124
A. The Laws for Multiple Integrals	125
1. Integrals over Curves in the Plane and in Space	125
2. Integrals over Surfaces in Space	130
3. Integrals over Manifolds M^r in the Space R^n	138
4. Transformations of the Parameters	140
5. Transformation of Coordinates. The Concept of an Alter-	
nating Differential Form	143
B. The Calculus of Alternating Differentials	154
6. The Grassmann Algebra of Alternating Differential Forms	154
7. The Differential Operations for the Alternating Differential	
Forms	159
8. Transformation of Coordinates	165
9. The Stokes Theorem	171
C. Applications of the Calculus of Alternating Differential Forms	176
10. Differential Forms in the Euclidean Plane	176
11. Differential Forms in Euclidean Three-Dimensional Space.	
Vector Analysis	177
12. Differential Forms on Differentiable and Riemannian	D 201 NS
Manifolds	184
CHAPTER 5 Complex Numbers. The Foundations of Analysis in the Complex	
Plane, E. Peschl and A. Schulte	188
1. The Complex Numbers	188
2. The Relation of Complex Numbers to Elementary Geometry	191
3. Fundamental Theorem of Algebra	195

CONTENTS

4. Sets and Sequences of Complex Numbers, Basic Topological	
Concepts	196
5. Functions, Real and Complex Differentiability, and Differ-	
entials	200
6. Holomorphic and Harmonic Functions	207
CHAPTER 6	
Functions of a Complex Variable, H. Tietz and K. Wigand	214
1. Holomorphic Functions in the Complex Plane	215
2. Meromorphic Functions in the Complex Plane	226
3. The Theory of Functions on the Closed Plane	229
4. Riemann Surfaces	238
5. Functions on a Riemann Surface	246
CHAPTER 7	
Points at Infinity, H. Behnke and H. Grauert	252
1. The Usefulness of Points at Infinity	253
2. Existence and Properties of the Projective Plane	259
3. The Function-Theoretic Closure of the Euclidean Plane	262
4. Neighborhoods and Compactification	264
5. Other Methods of Closing the Plane	266
6. Modifications	271
O. MOGINEURIS	
CHAPTER 8	
Ordinary Differential Equations, H. Tietz and K. Wigand	276
1 Introduction	276
1. Introduction 2. Mothodo of Integration	277
 Methods of Integration Properties of the Solutions of Explicit Differential Equations 	290
4. Solutions with Special Properties	294
4. Solutions with Special Properties	27.
CLIADTED 0	
CHAPTER 9 Partial Differential Equations, G. Hellwig and H. Liermann	306
	207
1. Basic Concepts and the Simplest Examples	306
2. Classification of Partial Differential Equations into Types;	221
Normal Forms	321
3. Uniqueness Questions	326
4. Questions of Existence	336

viii contents

CHAPTER 10	
Difference Equations and Definite Integrals, H. Meschkowski and	251
K. Reinhard	351
1. Introduction	351
2. Simple Difference Equations	355
3. The Γ-Function	365
4. Methods of Solution for Linear Difference Equations	379
CHAPTER II	391
Functional Analysis, W. Schmeidler and W. Dreetz	ADEAS LESSEAGUE
A. Introduction	391
B. Linear Theory	393
1. Linear Functionals and Operators	393
2. Hilbert Space and Banach Space	394
3. Linear Operators in 5	400
4. Symmetric and Completely Continuous Linear Operators	408 413
5. Spectral Theory of Self-adjoint Operators	418
C. The Nonlinear Theory6. The Fréchet Differential	418
7. Fixed Point Theorems	423
8. Application of the Fixed Point Theorems to Nonlinear Oper-	
ator Equations	434
9. More General Nonlinear Integral Equations	437
CHAPTER 12	
Real Functions, D. Kurepa and B. Schön	446
1. Basic Concepts of the Descriptive Theory of Sets and Func-	
tions	448
2. Continuous Functions	454
3. \mathbf{F}_{σ} - and \mathbf{G}_{δ} -Sets	456
4. Construction of More Complicated Sets and Functions by	
Limit Processes	458
5. Some Interesting Types of Functions	463
6. Analytic Sets (A-Sets)	465
7. Questions of Constructibility and Existence	474
CHAPTER 13	479
Analysis and Theory of Numbers, D. Kurepa and B. Schön	4/9
1. Invasion of the Theory of Numbers by Analysis	480

CONTENTS

2. Analysis and Questions of Transcendence	
3. General Remarks on the Relation between Analysis and	
Number Theory	500
CHAPTER 14	
The Changing Structure of Modern Mathematics, G. Köthe and	
F. Ballier	505
1. Introduction	505
2. The Development of the Axiomatic Method in Geometry	507
3. The Theory of Sets and Mathematical Logic	508
4. Change in the Attitude Toward Algebra	509
5. The Axiomatic Method in Analysis	512
6. Development in Other Mathematical Disciplines	518
7. Mathematics as a Hierarchy of Structures	520
8. The Bourbaki Construction of Mathematics	523
Index	529