Contents

	Preface ix						
		Prologue: Science in an Age of Transition 1					
1	C	OMPLEXITY IN NATURE 5					
	What is complexity? 6						
	1.2	Self-organization in physico-chemical systems: the birth of complexity 8					
	1.3	Thermal convection, a prototype of self-organization phenomena in physics 8					
	1.4 Self-organization phenomena in chemistry 15						
	1.5	5 Physico-chemical complexity and algorithmic complexity					
	1.6	1.6 Some further examples of complex behavior on our scale 28					
1.7 Again, biological systems 31							
	1.8	.8 Complexity at the planetary and the cosmic scale 36					
	1.9 Forces versus correlations—a summing up 41						
2	TI	HE VOCABULARY OF COMPLEXITY 45					
	2.1	Conservative systems 46					
	2.2	Dissipative systems 50					
	2.3	Mechanical and thermodynamic equilibrium. Nonequilibrium constraints 54					
	2.4	Nonlinearity and feedbacks 56					
	2.5	The many facets of the second law 61					
	2.6	Stability 65					
	2.7	Bifuraction and symmetry breaking 71					
	20	Onder and completions 75					

3 DYNAMICAL SYSTEMS AND COMPLEXITY 79

- 3.1 The geometry of phase space 80
- 3.2 Measures in phase space 82
- 3.3 Integrable conservative systems 88
- 3.4 Bifurcation in simple dissipative systems: search for archetypes of complexity 93
- 3.5 Dissipative systems in two-dimensional phase spaces: limit cycles 98
- 3.6 Reduction to low-dimensional systems: order parameters and normal forms 103
- 3.7 Phase space revisited: topological manifolds and fractals 110
- 3.8 Nonintegrable conservative systems: the new mechanics 115
- 3.9 A model of unstable motion: the horseshoe 121
- 3.10 Dissipative systems in multidimensional phase spaces. Chaos and strange attractors 123
- 3.11 Spatially distributed systems. Symmetry-breaking bifurcations and morphogenesis 132
- 3.12 Discrete dynamical systems. Cellular automata 138
- 3.13 Asymmetry, selection, and information 141

4 RANDOMNESS AND COMPLEXITY 147

- 4.1 Fluctuations and probabilistic description 148
- 4.2 Markov processes. Master equation 153
- 4.3 Markov processes and irreversibility. Information entropy and physical entropy 160
- 4.4 Spatial correlations and critical behavior 164
- 4.5 Time-dependent behavior of the fluctuations. The kinetics and the time scales of self-organization 171
- 4.6 Sensitivity and selection 179
- 4.7 Symbolic dynamics and information 183
- 4.8 Generation of asymmetric, information-rich structures 186
- 4.9 Once again, algorithmic complexity 191

5 TOWARD A UNIFIED FORMULATION OF COMPLEXITY 193

- 5.1 General properties of conserved dynamical systems 194
- 5.2 General properties of dissipative dynamical systems 197
- 5.3 The search for unification 198

5.7	The symmetry-breaking transformation Λ 205					
5.8	Gibbs ensembles and Boltzmann ensembles 209					
5.9	Kinetic theory 210					
5.10	Resonance and light-matter interaction 212					
5.11	Concluding remarks 214					
	OMPLEXITY AND THE TRANSFER OF NOWLEDGE 217					
6.1	Nonlinear dynamics in far-from-equilibrium conditions and the modeling of complexity 218					
6.2	Materials science 219					
6.3	Threshold phenomena in cellular dynamics 223					
6.4	Modeling climatic change and variability 226					
6.5	Probabilistic behavior and adaptive strategies in social insects 232					
6.6	Self-organization in human systems 238					
Appendix 1 LINEAR STABILITY ANALYSIS 243						
A1.1	A1.1 Basic equations 243					
A1.2	2 The principle of linearized stability 247					
A1.3	.3 The characteristic equation 248					
A1.4	.4 Illustrations 251					
A1.5	5 Systems exhibiting chaotic dynamics 254					
Appen	dix 2 BIFURCATION ANALYSIS 257					
A2.1	General properties 257					
A2.2	2 Expansion of the solution in perturbation series 260					
A2.3	2.3 The bifurcation equations 262					
Appen	ndix 3 PERTURBATION OF RESONANT MOTIONS IN NONINTEGRABLE CONSERVATIVE SYSTEMS 265					
A3.1	The twist map 265					
A3.2	Effect of the perturbation in the case of rational rotation numbers 268					

200

204

Probability and dynamics 199

Manifolds with broken time symmetry

The Baker transformation

A3.3 Homoclinic points 270

5.4

5.5

5.6

Appendix 4 RECONSTRUCTION OF THE DYNAMICS OF COMPLEX SYSTEMS FROM TIME SERIES DATA. APPLICATION TO CLIMATIC VARIABILITY 275

- A4.1 Introductory comments 275
- A4.2 Theoretical background for data analysis 278
- A4.3 The climatic attractor 279
- A4.4 Conclusion and perspectives 281

Appendix 5 PRIMORDIAL IRREVERSIBLE PROCESSES 283

- A5.1 Introduction 283
- A5.2 Standard cosmological model 285
- A5.3 Black holes 285
- A5.4 The role of irreversibility 287

 Suggestions for Further Reading 293

 Index 307