目 次

I 総 説

1.	1	葉用:	水としての条件
1	1.1	工業	第用水の性格1
1	.2	水	温3
1	.3	水	質······5
	1 -	3.1	地表水の水質5
	1.	3.2	地下水の水質8
	1.	3.3	水質によって起こる障害10
			Ⅱ 工業用水の水質改善概説
2.	用	水	処 理17
2	2.1	戾	曝
	2.	1.1	気曝の目的と条件17
	2.	1 · 2	気曝装置の種類18
2	2.2	脱	気20
	2	2.1	脱気の目的と原理20
	2.	2.2	脱気装置の種類22
2	2.3	沈	殿24
	2.:	3 · 1	沈殿の原理と条件24
	2.	3.2	沈殿装置設計の基本25
	2.	3∙3	沈殿装置の種類27
2	.4		集 作 用
	2.	4 · 1	凝集作用の原理と条件29
	2	4.2	凝集補助剤33

目

	2.4.3	凝集反応における条件の決定 ······3	7
	2 · 4 · 4	凝集剤の注入	0
2.	5 凝集	集(フロック化)の方法 ·······4	2
	$2 \cdot 5 \cdot 1$	混 合	2
	$2 \cdot 5 \cdot 2$	フロック形成4	3
2	·6 凝集	集・沈殿を同時に行なう方法	5
	2.6.1	急速凝集沈殿装置4	5
	2.6.2	急速凝集沈殿装置による用水処理と管理の実例4	8
2	7 ろ	過5	
	2.7.1	重力式急速ろ過法	
	$2 \cdot 7 \cdot 2$	圧力式急速ろ過法	
2	·8 硬	水 軟 化	
	2.8.1	薬 品 沈 殿 法	
	2.8.2	金属イオン封鎖剤による方法	
		'イオン交換法6	
2		ナン交換樹脂による水処理 ·······6	
		イオン交換樹脂の概念	
		イオン交換樹脂による水処理方式	
2		オン交換膜による水処理7	
		イオン交換膜の性質7	
	2.10.2	- イオン交換膜の製造7	
	2.10.3	7 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	
		イオン交換膜による脱塩7	
2	·11 鉄	およびマンガンの除去7	
	2.11.1	716.65	
		: 鉄およびマンガンの処理法	
2		ケーイ 酸	
		用水中のケイ酸による障害	
		2. 脱 ケ イ 酸 法	
		の磁気処理	
	2.13.1	. スケールの物理的処理)]

Ⅲ ボイラ用水

3.	ボ	イラ	用水の管理99
3	3 · 1	ボイ	ラ用水の制限値99
3	3· 2	ボイ	ラ用水中の不純物によって起こる障害105
	3.	2.1	スケールの生成による障害105
	3.	2.2	ボイラ水による腐食の原因と障害106
	3.	2.3	気 水 共 発112
3	3.3	ボイ	ラ用水処理113
	3.	3.1	ボイラ外処理113
	3.	3.2	ボイラ内処理115
3	3 • 4	ボイ	ラ水の処理と管理117
	3.	4.1	pH およびアルカリ度調整117
	3.	4.2	軟化剤によるスケール防止121
	3.	4.3	かん泥調整124
	3.	4.4	化学的脱酸法126
	3.	4.5	防食剤添加法128
	3.	4.6	苛性脆化防止131
	3.	4.7	気水共発防止132
3	3.5	ボイ	ラ用水処理の計画・実施例134
	3.	5.1	硬水軟化処理134
	3.	$5 \cdot 2$	ボイラ給水処理(純水製造)計画例137
	3.	5.3	磁気処理によるボイラ給水の利用例143
			™ ×A +n ⊞ -k
			Ⅳ 冷 却 用 水
4.	冷	却用:	水の管理151
4	1 ·1	冷却	T用水としての条件
4	1.2	冷劫	P用水の利用方式······152
4	1 ·3	冷刦	『用水の水質158
	4.	3.1	炭酸塩平衡関係······158
	4.	3.2	水質と炭酸塩平衡の実験例

	4・4 冷却用水の	処理と管理	•••••	166
	4·4·1 処 理	! 対 策		166
	4・4・2 インヒ	ビターによる冷	却用水の処理	167
	4·4·3 電気	防 食 法		184
	4.5 工場におけ	- る冷却用水処理(の実際例	188
	4·5·1 冷却用	水として軟化処理	埋水を使用した例	188
	4·5·2 冷却用	水使用によるス・	ケールおよび軟泥の生成防止対策	191
		V	工業用水と生物	
5.	5. 用水中の発生征	微生物と処理およ	:び管理	195
	5・1 微生物の発	生と環境:		195
	5・2 微生物の生	長と栄養	••••••	196
	5.3 用水中にふ	>つうみられる微	生物の種類	199
	5.3.1 藻	類		200
			える因子	
			害	
			対する一般的概念とその障害	
			の除去	
	5.5.1 日光			
	5.5.2 沈 展	始 処 理		21
	5.5.3 ろ 追			
			の除去	
			ļ	
	5.6.2 銅 化	ヒ 合 物		22
	E	(L A Hm		

	5.6.4	錫	1k.	\Rightarrow	<i>₺</i> n		223
		<i>y11</i> 3	14	Ц	7%)		220
	$5 \cdot 6 \cdot 5$	フェ	1 -	- ル化	1.合物	ŋ	223
	5.6.6	アミ	ン系	薬剤	りおよ	びアンモニウム化合物	224
5	·7 工業	美用水	利用	に伴	生なう	障害生物の発生と処理	226
	$5 \cdot 7 \cdot 1$	淡水	利用	に件	きなう	障害微生物の発生と処理	226
	$5 \cdot 7 \cdot 2$	海水	利用	に件	きなう	障害生物の発生と処理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	230
	5.7.3	製紙	工程	中の	章章	『微生物と処理対策	236
		参	考	図	書…		242
		索			引…		245