目 次

1. 概 説———————————————————————————————————
1.1 は じ め に
1.2 光エレクトロニクスの歴史
1.2.1 電気通信技術の高周波化 2
1.2.2 電波技術から光波技術へ4
1.3 レーザの原理と構造4
1.3.1 レーザの原理
1.3.2 He-Ne (ヘリウム・ネオン) レーザ
1.3.3 半導体レーザ
1.4 本書の構成12
演 習 問 題
2. 波 動 光 学——————————————————————————————————
2.1 マクスウェルの方程式
2.2 波動方程式13
2.3 伝 搬 定 数
2.4 z 方向に進む平面波
2.5 任意の方向に進む平面波
2.6 金属導波管中の波動と表面波19
2.7 伝 送 パ ワ ー
2.8 位相速度と群速度21
2. 9 k-β 図 表
2.10 偏 光23

vi	光ェ	レク	ŀ	==	ク	ス	

2.10.2 直線偏光24
2. 10. 3 円 偏 光24
2.10.4 だ 円 偏 光25
2.11 誘電体の界面における屈折と反射26
2.11.1 スネルの法則26
2.11.2 入射光の電界が入射面に垂直な場合27
2. 11.3 入射光の電界が入射面に平行な場合29
2.11.4 ブルースタ角29
2. 11. 5 グースヘンヒェン偏移31
2.12 干渉とコヒーレンス31
2.12.1 干渉じまの記録31
2.12.2 干渉じまの鮮明度33
2. 12. 3 コヒーレンスとコヒーレンス長33
2. 12.4 コヒーレンスのより正確な表示34
2. 12. 5 半導体レーザの場合
2.12.6 He-Ne レーザの場合36
演 習 問 題
3. 幾 何 光 学
3. 幾 何 光 学 3. <i>I</i> 波動光学と幾何光学
3. 1 波動光学と幾何光学
3. 1 波動光学と幾何光学
3. 1 波動光学と幾何光学 38 3. 2 アイコナール方程式 39 3. 3 光線方程式 41
3. 1 波動光学と幾何光学 38 3. 2 アイコナール方程式 39 3. 3 光 線 方 程 式 41 演 習 問 題 43
3. 1 波動光学と幾何光学 38 3. 2 アイコナール方程式 39 3. 3 光線方程式 41
3. 1 波動光学と幾何光学 38 3. 2 アイコナール方程式 39 3. 3 光 線 方 程 式 41 演 習 問 題 43
3. 1 波動光学と幾何光学 38 3. 2 アイコナール方程式 39 3. 3 光線方程式 41 演習問題 43 4. 回 折 4. 1 歴史的背景 44
3. 1 波動光学と幾何光学 38 3. 2 アイコナール方程式 39 3. 3 光線方程式 41 演習問題 43 4. 回 折 4. 1 歴史的背景 44 4.1.1 ホイゲンスの原理 44
3. 1 波動光学と幾何光学 38 3. 2 アイコナール方程式 39 3. 3 光線方程式 41 演習問題 43 4. 回 折 4. 1 歴史的背景 44 4. 1.1 ホイゲンスの原理 44 4. 1.2 フレネルの回折理論 45
3. 1 波動光学と幾何光学 38 3. 2 アイコナール方程式 39 3. 3 光線方程式 41 演習問題 43 4. 回 折 4. 1 歴史的背景 44 4. 1.1 ホイゲンスの原理 44 4. 1.2 フレネルの回折理論 45 4. 2 回折の基礎理論 46
3. 1 波動光学と幾何光学 38 3. 2 アイコナール方程式 39 3. 3 光 線 方 程 式 41 演 習 問 題 43 4. 回 折 44 4. 1.1 ホイゲンスの原理 44 4. 1.2 フレネルの回折理論 45 4. 2 回折の基礎理論 46 4. 2.1 キルヒホッフの積分定理 46
3. 1 波動光学と幾何光学 38 3. 2 アイコナール方程式 39 3. 3 光線方程式 41 演習問題 43 4. 回 折 4. 1 歴史的背景 44 4. 1.1 ホイゲンスの原理 44 4. 1.2 フレネルの回折理論 45 4. 2 回折の基礎理論 46

4.	3	近軸	1上の回折波の伝搬49
	4.	. 3. <i>1</i>	近軸上の回折問題・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	4.	. 3. 2	フレネル回折とフラウンホーファ回折50
	4.	. <i>3</i> . <i>3</i>	各回折像の計算法
	4.	3.4	フラウンホーファ回折像がフーリエ変換像となることの物理的意味54
4.			i的にフラウンホーファ回折像を得るための光学系 <i>55</i>
			フーリエ変換光学系(I)
	4.	4. 2	フーリエ変換光学系(II)
4.	5	種々	の開口に対するフラウンホーファ回折像
		5. 1	方形開口の場合58
			スリット状の開口の場合60
	-	5.3	円形開口の場合
		5. 4	正弦波格子の場合
4.	6	ガウ	7 スピーム
演	i	图目	男 題63
		= .	ドフーノバの純浄し味辨
			光ファイバの特徴と特性―――――――――――――――――――――――――――――――――――
5.			信と光通信研究の歴史の概観65
5.	1		信と光通信研究の歴史の概観
5 .	1 5.	光通	信と光通信研究の歴史の概観
5 .	1 5. 5. 5.	光道 1.1 1.2 1.3	信と光通信研究の歴史の概観 65 前史(光通信実用の時代) 65 休止期(電波開拓の時代) 66 準備期(模索の時代) 67
5.	1 5. 5. 5.	光道 1.1 1.2 1.3	信と光通信研究の歴史の概観
	1 5. 5. 5.	光通 1.1 1.2 1.3 1.4	信と光通信研究の歴史の概観 65 前史(光通信実用の時代) 65 休止期(電波開拓の時代) 66 準備期(模索の時代) 67
<i>5</i> .	1 5. 5. 5. 2	光通 1.1 1.2 1.3 1.4	信と光通信研究の歴史の概観 65 前史(光通信実用の時代) 65 休止期(電波開拓の時代) 66 準備期(模索の時代) 67 光ファイバの登場 69
<i>5</i> .	1 5. 5. 5. 5. 2 3	光通 1.1 1.2 1.3 1.4 光フ 3.1	信と光通信研究の歴史の概観 65 前史(光通信実用の時代) 65 休止期(電波開拓の時代) 66 準備期(模索の時代) 67 光ファイバの登場 69 ァイバの特徴 70 ァイバの種類と特性 71 多モード光ファイバと単一モード光ファイバ 71
<i>5</i> .	1 5. 5. 5. 2 3 5. 5.	光通 1.1 1.2 1.3 1.4 光フ 3.1 3.2	信と光通信研究の歴史の概観 65 前史(光通信実用の時代) 65 休止期(電波開拓の時代) 66 準備期(模索の時代) 67 光ファイバの登場 69 ァイバの特徴 70 ァイバの種類と特性 71 多モード光ファイバと単一モード光ファイバ 71 光ファイバにおける「分散」 72
<i>5</i> .	1 5. 5. 5. 5. 2 3 5. 5. 5.	光通 1.1 1.3 1.4 光 光 フ 3.1 3.2 3.3	信と光通信研究の歴史の概観 65 前史(光通信実用の時代) 65 休止期(電波開拓の時代) 66 準備期(模索の時代) 67 光ファイバの登場 69 ァイバの特徴 70 ァイバの種類と特性 71 多モード光ファイバと単一モード光ファイバ 71 光ファイバにおける「分散」 72 種々の分散の大きさの比較 73
<i>5</i> .	1 5. 5. 5. 5. 2 3 5. 5. 5.	光通 1.1 1.3 1.4 光 光 フ 3.1 3.2 3.3	信と光通信研究の歴史の概観 65 前史(光通信実用の時代) 65 休止期(電波開拓の時代) 66 準備期(模索の時代) 67 光ファイバの登場 69 ァイバの特徴 70 ァイバの種類と特性 71 多モード光ファイバと単一モード光ファイバ 71 光ファイバにおける「分散」 72
5. 5.	1 5. 5. 5. 5. 2 3 5. 5. 5. 4	光道 1.1 1.2 1.3 1.4 光 光 フ 3.1 3.3 3.4 フ	信と光通信研究の歴史の概観 65 前史(光通信実用の時代) 65 休止期(電波開拓の時代) 66 準備期(模索の時代) 67 光ファイバの登場 70 ァイバの種類と特性 71 多モード光ファイバと単一モード光ファイバ 71 光ファイバにおける「分散」 72 種々の分散の大きさの比較 73 不均一コア光ファイバ 74 ァイバの伝送損失 76
5. 5.	1 5. 5. 5. 5. 2 3 5. 5. 5. 4 5.	光 1. 1 2 1. 3 1. 4 2 3. 1 3 3. 4 2 7 7 4. 1	信と光通信研究の歴史の概観 65 前史(光通信実用の時代) 65 休止期(電波開拓の時代) 66 準備期(模索の時代) 67 光ファイバの登場 70 ァイバの特徴 70 ァイバの種類と特性 71 多モード光ファイバと単一モード光ファイバ 71 光ファイバにおける「分散」 72 種々の分散の大きさの比較 73 不均一コア光ファイバ 74 ァイバの伝送損失 76 損失の諸要因 76
5. 5.	1 5. 5. 5. 5. 2 3 5. 5. 5. 4 5.	光 1. 1 2 1. 3 1. 4 2 3. 1 3 3. 4 2 7 7 4. 1	信と光通信研究の歴史の概観 65 前史(光通信実用の時代) 65 休止期(電波開拓の時代) 66 準備期(模索の時代) 67 光ファイバの登場 70 ァイバの種類と特性 71 多モード光ファイバと単一モード光ファイバ 71 光ファイバにおける「分散」 72 種々の分散の大きさの比較 73 不均一コア光ファイバ 74

vī <u>光エレクトロニクス</u>
5.5.1 製造法の種類78
5.5.2 二重るつほ法79
5.5.3 MCVD 法······79
5.5.4 VAD 法······80
演 習 問 題
6. 幾何光学による光ファイバの解析
6.1 ま え が き82
6.2 幾何光学による均一コア光ファイバの取扱い83
6.2.1 均一コア光ファイバ中の光線の種類83 6.2.2 子午光線の解析84
6.2.2 子十元級の解析・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
6.2.4 子午光線の分散····································
6.3 幾何光学による不均一コア光ファイバの取扱い86
6.3.1 不均一コア光ファイバ中の光線の種類86
6.3.2 基本方程式86
6.3.3 解の実例(I)——子午光線87
6.3.4 均一コアの場合との比較85 6.3.5 解の実例(II)——ら旋光線90
6.4 t & b91
演 習 問 題
المسترات الم
7. 波動光学による光ファイバの解析———————
7.1 まえがき93
7. 2 基本方程式の導出
7.2.1 直角座標系における波動方程式94
7. 2. 2 円柱座標系における波動方程式96
7.3 均一コア光ファイバ中の波動
7.3.1 波動方程式の一般解96
7.3.1 波動万程式の一般解····································
7.3.2 コアおよびグラット中の竜磁赤の肝························7. 7.3.3 モードの分類····································
1. U. U. T. XX

7.3.4 固有方程式 (厳密解) 100

7.3.5 固有方程式(弱導波近似解)	102
7.3.6 固有方程式の統一形式	102
7.4 均一コア光ファイバの諸性質	104
7.4.1 伝搬モード,放射モード,漏洩モード	104
7.4.2 各モードの伝搬特性の決定	105
7.4.3 モード番号 l の意味と遮断周波数	106
7.4.4 LP = - F	
7.4.5 分 散 曲 線	109
7.4.6 単一モード光ファイバと多モード光ファイバ	110
7.4.7 電磁界分布	112
7.5 均一コア光ファイバの分散特性	
7.5.1 分散の諸要因	
7.5.2 群遅延を表す式	
7.5.3 多モード分散	
7.5.14 波 長 分 散	
7.5.5 導波路分散	
7.5.6 材料分散	
7.5.7 種々の分散の大きさの比較	119
7.6 不均一コア光ファイバの解析と伝搬特性	
7.6.1 種々の解析法	
7.6.2 波動光学的な解析の必要性	
7.6.3 分散特性と群遅延特性の解析例	122
演 習 問 題	123
0 WWE =	
8. 光通信システム	
8. 1 光通信システムの基本形と種々の形式	
8.1.1 空間伝搬形光通信と光ファイバ通信	
8.1.2 用途による分類	
8.1.3 ディジタル変調方式とアナログ変調方式	127
8.2 構成部品と使用波長帯	
8. 2. 1 光 源	
8.2.2 変 調 器	
8.2.3 光ファイバ	130
8 2 4 平 姶 出 男	132

x 光エレクトロニクス

	Ø.	. 2. 5	各構成部品の特性と使用波長帯との関連	132
8.	3	変記	調と符号化	133
			アナログ変調の諸形式	
			アナログ予変調の諸形式	
			ディジタル変調の諸形式	
			ディジタル信号の再符号化(冗長化符号)	
8.	4	光通	種信回線の設計	136
	8.	4. 1	信号対雑音比 (SN 比) と符号誤り率	
	8.	4. 2	損失制限と帯域制限	137
8.	5	周波	数多重光通信とヘテロダイン形光通信	138
			周波数多重光通信	
	8.	5. 2	ヘテロダイン形光通信	139
8.	6	光通	種信に用いられる光回路部品	139
演		P	問題	140
	9	9.	ホログラフィの原理と特性――――――	 .
9.	1	赤口	グラフィとは何か	141
9.	2			
		ホロ	· グラフィの歴史 ······	145
	9.		ガボアの提案	
		2. 1		145
	9.	2. 1 2. 2	ガボアの提案	145 147
9 .	9. 9.	2. 1 2. 2 2. 3	ガ ボ ア の 提 案······ リース・ウパートニクスの二光束法·····	145 147 149
9.	9. 9. 3	2. 1 2. 2 2. 3 ホロ	ガボアの提案	145 147 149 149
9.	9. 9. 3 9.	2. 1 2. 2 2. 3 ホロ 3. 1	ガ ボ ア の 提 案	145 147 149 149
	9. 9. 3 9.	2. 1 2. 2 2. 3 木口 3. 1 3. 2	ガボアの提案	145 147 149 149 149 150
<i>9</i> .	9. 9. 3 9. 9.	2. 1 2. 2 2. 3 木口 3. 1 3. 2	ガボアの提案	145 147 149 149 149 150
<i>9</i> .	9. 9. 3 9. 9. 4 5	2.1 2.2 2.3 ホロ 3.1 3.2 ホロ 5.1	ガボアの提案	145 147 149 149 150 151 154
<i>9</i> .	9. 9. 3 9. 9. 4 5 9. 9.	2.1 2.2 2.3 木口 3.1 3.2 木口 5.1 5.2	ガボアの提案	145 147 149 149 150 151 154 154 156
<i>9</i> .	9. 9. 3 9. 9. 4 5 9. 9.	2.1 2.2 2.3 木口 3.1 3.2 木口 5.1 5.2	ガボアの提案	145 147 149 149 150 151 154 154 156
9. 9.	9. 9. 3 9. 4 5 9. 9.	2. 1 2. 2 2. 3 水口 3. 1 3. 2 水口 5. 1 5. 2 5. 3	ガボアの提案	145 147 149 149 150 151 154 154 156 157

目	次	ХÌ
	•	X,

9.6.2 二次元ホログラムの場合	
9.6.3 三次元ホログラムの場合	161
9.7 三次元ホログラムからの像再生	162
9.7.1 ブラッグ回折の条件	163
9.7.2 物体光,参照光,再生用照明光の関係	164
9.7.3 波長選択性と角度選択性の応用	165
9.8 ホログラフィの再生光効率	165
9.8.1 振幅形二次元回折格子の回折効率	
9.8.2 位相形二次元回折格子の回折効率	
9.8.3 三次元的な回折格子の回折効率	
9.8.4 種々の回折格子の回折効率の実測値	169
9.9 ホログラフィにおける再生像の解像限界	170
9.10 ホログラフィの情報理論	<i>172</i>
9.10.1 概 説	
9.10.2 基礎的諸概念	
9.10.3 ホログラムの情報量の計算	173
9.11 感 光 材 料	179
演 習 問 題	180
10 . ホログラフィとコヒーレント光学の応用	
10.1 種々の光メモリとその分類	
10.2 ホログラムメモリ	182
10.2.1 ホログラムメモリの構成	183
10.2.2 ホログラムメモリの特徴	
10.2.3 ホログラムメモリの記憶容量限界	186
10.3 刻印方式の光メモリ	191
10.3.1 刻印方式光メモリシステムの構成例	192
10.3.2 実際のシステムと種々の変形	
10.4 コヒーレント光情報処理	194
10.4.1 概 説	194
10.4.2 フーリエ変換を行うコヒーレント光学系	195
10.4.3 簡単なコヒーレント光フィルタ	

xi 光エレクトロニクス

	10. 4. 4	ホログラフィックフィルタ	198
10.	5 ⊐ t	ニーレント光計測技術 ······· 1	198
	10. 5. 1	古典的な干渉計測技術	198
	10. 5. 2	ホログラフィ計測技術の特徴と分類	200
	10. 5. 3	単一露光法	200
	10. 5. 4	二 重 露 光 法	202
	10. 5. 5	時間平均法	203
	10. 5. 6	等高線形成法	203
10.		欠元画像技術としてのホログラフィ	
		概 説	
	10.6.2	線状フィラメント光源によるイメージホログラフィ	205
	10.6.3	全周形マルチプレックスホログラフィ	206
演	習「	⑤	207
	演習	問題略解	
	索	引	215