Contents*

Foreword	ix

xi

-	
DBEEACE	
IKEFALE	

1 Introduction

1.1	Nonsinusoidal Waves in Radar	1
1.2	Radar Equation for Nonsinusoidal Waves	2
1.3	Radar Signature	23
1.4	Review of Radiators	36
1.5	Review of Circuits	43
1.6	Modified Maxwell Equations	47
1.7	A Guide to Reading	52

2 Large-Current Radiators

2.1	Magnetic Vector Potential of the Current	55
2.2	Vector Potential and its Derivatives	68
2.3	Effects of Current Source and Sink	106
2.4	Derivatives of the Scalar Potential	115
2.5	Scalar Potential in Center of Radiator	131
2.6	Scalar Potential on Radiator Axis	135
2.7	Scalar Potential at Great Distances	137

3 Surface of Radiator

3.1	Vector Potential on Surface	142
3.2	Derivative of Vector Potential on Surface	172
3.3	Derivative of Scalar Potential on Surface	214
3.4	Field Strengths on Surface	220
3.5	Power Flow Through Surface	230

^{*}Equations are numbered consecutively within each of Sections 1.1 to 6.2. Reference to an equation in a different section is made by writing the number of the section in front of the number of the equation, e.g., Eq. (2.1-50) for Eq. (50) in Section 2.1.

Illustrations and tables are numbered consecutively within each section, with the number of the section given first, e.g., Fig. 1.2-4, Table 4.1-1.

References are listed by the name of the author(s), the year of publication, and a lowercase Latin letter if more than one reference by the same author(s) is listed for that year.

CONTENTS

4 Field Strengths and Power at Any Distance

4.1	Field Strengths Along the Radiator Axis	241
4.2	Azimuth Pattern of the Electric Field Strength	255
4.3	Elevation Pattern of the Electric Field Strength	264
4.4	Azimuth Pattern of the Magnetic Field Strength H.	274
4.5	Elevation Pattern of the Magnetic Field Strength H _x	279
4.6	Azimuth Pattern of the Magnetic Field Strength H _y	283
4.7	Elevation Pattern of the Magnetic Field Strength	287

5 Arrays of Radiating Plates

5.1	Delayed Interaction	289
5.2	Simplified Array Interaction	294
5.3	Surface Field Strengths Due to Interaction	299
5.4	Interaction at Great Distances	302
5.5	Beam Forming Without Interaction	305
5.6	Beam Forming With Interaction	311

6 Appendix

6.1	Evaluation of Certain Sums	315
6.2	Dogma of the Circle	326
REFEREN	NCES AND BIBLIOGRAPHY	330
INDEX		336