CONTENTS

CONT	RIBUTORS TO VOLUME XIII				•	•	٠	•	•	٠			٠	•	v
PREFA	CE		٠					1.0	3.83	٠	٠	•	٠	•	vi
	Inelastic Collisi	ons l	oetv	veen	Ato	mi	c S	yst	en	18					
	Jo	OHN	В.	Hast	ED										
I.	Introduction														1
II.	Classification of Collisions														3
	Experimental Methods of Str														4
IV.	Collision Cross Sections—The	e De	tern	ainin	e F	acto	rs		-		Ī		021	i	27
	Acknowledgments						-~				•		•	•	75
													•	•	75
	References												•	•	78
	Therefore		•		•	٠	•	٠	•	•	٠	٠	٠	•	70
	Field Ionizatio	n an	d F	hlei	Ion	Μí	crc	SEC.	าทข						
		WIN					V	,,,,,,,	J						
															
	Introduction								٠			•	•	•	83
II.	Field Ionization of Free Ate	oms	•				٠			•	•		•		84
III.	Field Ionization near a Met	al Su	ırfac	e .											87
IV.	Field Ion Emission from a M	Metal	Su	rface											100
V.	Field Ion Microscopy .														114
															177
	References									٠		•		٠	177
	Velocity Distri	butio	on i	n Ele	ectr	on	Sti	'08	ms						
	1	P. A.	Ln	NDSAY	r										
I.	Introduction														182
II.	General Considerations .														185
	Probability Considerations														189
IV	Velocity Distribution of the 1	Electi	· rone	Emi	ttod	· Lbv		Tե		·		Co.	tha	40	197
v	Velocity Distribution in Plan	o St	rator	. 131111	·····	ı Бу	a	111	CIII	1101	110	Ca	шо	ue	206
7/T	Velocity Distribution in Cyli	ie by	-1 (.115 . North	•	•	•	٠	٠	٠	٠	٠	٠	•	
VII.	Volocity Distribution in Cyli	maric December	eri y	oyste:	1118 11.6				1.7	•	•	•	٠	٠	250
7 11. 7 11.	Velocity Distribution in the I	rese	псе	OI &	IVI A	gnet	ıc	r ie	ıa	٠	•	•	•	٠	294
111.	Experimental Support for the														308
	Acknowledgments														310
	References		•			•		•			•	•			311
			ix												

Electron Probe Microanalysis

RAYMOND CAS:	TAING
--------------	-------

I. Introduction		. 317											
II. General Structure of the Microanalyzer		. 324											
III. The Fundamentals of Quantitative Analysis by X-Ray Emission		. 360											
IV. The Contribution of Microanalysis to Scientific Research	•	. 379											
References	•	. 384											
Television Camera Tubes: A Research Review													
PAUL K. WEIMER													
I. Introduction		. 387											
II. Television Pickup with Nonstorage Devices		. 389											
III. The Concept of Storage		. 390											
IV. The Image Orthicon	•	. 394											
V. Camera Tubes Based on Photoconductivity		. 399											
VI. Electron Optical Considerations in Camera Tubes		. 406											
VII. Signal-to-Noise Considerations in Camera Tubes		. 414											
VIII. Image Intensifier Camera Tubes		. 419											
IX. The Search for More Efficient Methods of Video Signal Generation		. 423											
X. Camera Tubes for Special Applications		. 426											
XI. Fundamental Limitations on Camera Tube Performance		. 430											
XII. Image Pickup Devices of the Future		. 435											
References		. 430											
References													
AUTHOR INDEX		. 439											
STIP INTER THINEY		. 44											