目 次

第 章 序 論

1・1 本巻の目的と構成 阿部	; 武治 <i>1</i>
1・2 材料の強度と破壊におけるミクロな情報とマクロなそれとの関連性 …大南	正瑛 3
1・3 ミクロとマクロを橋渡しする階層的な情報大南	
[1] 分化と総合	6
〔2〕 階層的な情報例	8
参考文献	9
西河 第 2 章 材料の組織、構造パラメータの測定 _{佐河}	尺 泰二
第 🚨 章 材料の組織、構造パラメータの測定 佐火	入間健人
2・1 組織の定量的計測法	11
〔1〕 光 学 顕 微 鏡	
〔2〕 電子 顕 微 鏡	14
[3] X 線 法······	16
〔4〕超 音 波 法	
2・2 定量金属組織学の統計的背景	
〔1〕 測定法に起因する誤差	20
〔2〕 統計学の基礎	22
2・3 各種の測定量	
[1] 測 定 法	
〔2〕 基本的な測定量	
〔3〕 三次元的なパラメータの定量	
〔4〕 透過観察による定量	
2.4 自 動 測 定	42

2・5 集合組織の測定	43
[1] ミラー指数	45
〔2〕 ステレオ投影	48
〔3〕 集合組織の解析	50
参 考 文 献	53
第 3章 ミクロからマクロに至る構造パラメータとその変化	. ~ "III —
界 ♥ 草 ミグロからマグロに至る構造パラメータとその変化	の測定
3・1 転位分布と転位密度、副結晶粒、結晶の方位差に関する情報:その1	
電子顕微鏡観察により得られる情報・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	徹 57
[1] 電子顕微鏡観察	57
〔2〕 電子顕微鏡の装置構成	59
(3) 観察ならびに測定法上の注意	62
〔4〕 各種電子顕微鏡像の実例と解釈	62
(5) 転位密度の測定	74
[6] その場実験の適用例	76
3・2 転位分布と転位密度、副結晶粒、結晶の方位差に関する情報:その2	
X線回折法により得られる情報田中	B介 79
(1) 結晶によるX線の回折····································	79
(2) X線ラウエ法	86
〔3〕 細束X線回折法·····	91
〔4〕 X線回折強度曲線の解析······	100
(5) その他のX線回折およびまとめ	106
3・3 溶質原子に関する情報 杉本	孝一 108
〔1〕 內 部 摩 擦 法	109
〔2〕 電 気 抵 抗 法	117
3・4 結晶粒オーダの情報 阿部	武治 119
[1] すべり変形	119
[2] 結晶粒界, 粒界すべり	119
〔3〕双 結 晶	120
[4] 不 均 質 体	121
〔5〕 多結晶体、結晶粒による変形の差異	124

目

	(7)	す~	٠.	り	带	•••••	•••••	130
	(8))	ボイ	ドの	測	定	••••		130
3	• 5	き	裂に関	関す.	る情	報⋯⋯⋯⋯	田中	啓介	131
	(1)	き裂長	長さ,	形	状の測定	• • • • • •		131
	(2)	き裂気	七端	開口	変位,塑性域の測定			135
3	• 6	フ	ラク	トグ	ラフ	ィの基礎 寺崎富久長・	日野	谷重晴	138
	(1)	フラク	ን ት :	グラ	フィとは		• • • • • • • • • • • • • • • • • • • •	138
	(2)	フラク	ን	グラ	フィの実験技術			141
	(3))	ぜい	性	破	壞		•••••	143
	(4)	延し	生	破	壞·····			144
	(5))	疲労	芳 7	破	壞·····			145
	(6)	環均	竟	玻	壊·······			147
	(7)	高温	温 7	破	壞			152
3	. 7	そ	の他の	D測)	定量		阿部	武治	153
	(1)	原子空	岂孔	農度			• • • • • • • • • • • • • • • • • • • •	153
	(2)	アコー	-ス [・]	ティ	ックエミッション		• • • • • • • • • • • • • • • • • • • •	155
	(3)	表	i)	柤	さ			159
	(4)	硬			さ		• • • • • • • • • • • • • • • • • • • •	161
	(5)	密			度·····			164
	(6)	ま	٤		Ø			165
参	: 考	ž	文 楠	랐 ····					165
						1			
						第 4章 実験的応力・ひずみ解析			
4	٠1	V	ずみ!	<i>J</i> *—	ジ注		角	誠之助	175
	(1)	特			徵······			175
	(2)	ひずみ	み ゲ	ージ	の構造と原理		•••••	176
	(3)	ひずる	み測:	定器	と測定法			176
	(4)	ひずる	みゲ	ージ	の特性			178
	(5)	ひずる	シ 測:	定值	から応力成分の計算法			179
	(6)	特 殊	ゲ	_	ジ	• • • • • •	•••••	181
	(7)	測	定		例			182
4	• 2	光	: 弾	性	注		角	誠之助	184

	(1)	二次元光弾性法(平行光法)	•••••		185
		光弾性皮膜法			
	(3)	特 殊 な 方 法			
	(4)	測 定 例			190
4	・3 モ	ア レ 法	角	誠之助	194
		基本的なモアレ法			
	(2)	高感度モアレ法			196
	(3)	測 定 例	•••••		197
4	· 4 \(\nu\)	ーザ応用測定法	角	誠之助	200
	(1)	ホログラフィ干渉法			200
	(2)	スペックル法			202
	(3)	測 定 例	•••••		204
4	• 5 X	線応力測定法	後蔣	養 徹	207
	(1)	測定法の原理	•••••		207
	(2)	X線回折法と測定装置	•••••	•••••	208
	(3)	測 定 の実際例	•••••		212
4	•6 残	留応力と弾性係数		邓 武治	217
		残留応力の分類			
		残留応力の測定法			
	(3)	残留応力と変形,強度			
	(4)	弾性係数の測定法			
	(5)	各種材料の弾性係数と残留応力		•••••	228
4	•7 音				
		音弾性法の原理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			
	(2)	音弾性法の測定技術・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		•••••	232
	(3)	音弾性法による測定例	•••••		234
4		の他の測定法とまとめ			
	(1)	応力塗料法	••••••		2 3 8
	(2)	銅めっき法と磁気ひずみ法			
	(3)	格子線法,スクライブドサークル法			
	(4)	強度解析における各測定法の相互関連	•••••		245
Ź	蒙 考	文 献	•••••		249

目

	第	5 章	材料強度試験の方	方法	中村 恒成		宏 衰
5・1 材料強	食試験の種類…	• • • • • • • • • • • • • • • • • • • •		•••••			257
〔1〕 材料	選定や施工技術	選定のた	めの試験				258
〔2〕 寿命	}評価試験						259
〔2〕 若干	-の測定センサに	ついて…					265
5.3 負荷樹	様式の基本形と試	験機につ	いて			••••	269
5 · 4 特殊環	環境下の試験装置				• • • • • • • • • • • • • • • • • • • •		272
〔1〕 塩力	k腐食環境·····				• • • • • • • • • • • • • • • • • • • •		272
〔2〕 低	温 環 境				•••••		273
〔3〕 高	温 環 境				• • • • • • • •		274
(4) ^!	リウム環境						274
5.5 試験上	こで留意すべき事	項					276
参考文	献	••••••		•••••			283
	Arter .	<u> </u>	変形,強度,寿命の	- 4π1 -			
	弗 (U 車	炎形,独度,寿 命0	の呼が			
6 · 1 疲労强	鱼度評価の実験的]アプロー	チ		野區	奴	285
〔1〕 繰迟	亙し塑性ひずみの	測定によ	る疲労寿命評価				286
〔2〕 き変	2関閉口挙動の測	定による	疲労き裂進展速度評価			•••••	292
〔3〕 疲勞	労過程の連続観察	そと ミクロ	な定量測定		• • • • • • • •	• • • • • •	296
6・2 損傷の	D検出と残存寿命	の推定…		······· 後	於藤	徹	306
〔1〕 使月	目に伴う材質変化	と非破壊	i検出法·······			•••••	306
〔2〕 疲	労 の 場 合						307
(3) 9!	リープの場合			•••••	• • • • • • • • • • • • • • • • • • • •		31
6.3 フラク	クトグラフィの原	5用例		寺崎富久長・日	野谷雪	重晴	319
〔1〕 破函	面と力学因子			•••••			320
(2) 破司	面と材料因子			•••••		••••	322
(3) 7	ラクトグラフィと	:事故解析	-	•••••			326
6・4 その6	也二,三の問題…		•••••	ßī	可部 i	武治	328

x			目	次		
(1)	変刑	/機構領域図,	破壊機構領域図·		32	28
(2)	板材	すの成形限界…			33	32
(3)	ま	と め				36
参 考	文	献	•••••		····· 35	37
索		引			34	11