目次

I. 格子欠陥測定法概説

1. 格	子欠陥の特徴	
$1 \cdot 1$	格子欠陥	1
1.2	点欠陥の構造とおもな性質	2
	A. 原子空孔…(2)/ B. 格子間原子…(2)/ C. その他の点欠陥…(4)	
$1 \cdot 3$	転 位	
	文 献	7
2. 試	料について鈴木秀次	<u> </u>
$2 \cdot 1$	どんな試料を用いるか	9
2.2	純度と化学組成を知る方法	10

A. 転位の発生とリニエジ構造について…(37)/ B. 組成的過冷却による

不完全構造(セル構造)について…(40)

実例…(80)

	8.2	無転位 Nb 単結晶の育成 8.
		A. 完全に近い Nb 単結晶を得る方法…(81)/ B. 電子衝撃加熱装置…(82)/ C. 単結晶の育成…(85)/ D. 単結晶の完全性…(86)
	8.3	アルミニウムの帯精製 88
		A. 帯溶融法の原理…(88)/ B. アルミニウムの帯精製…(89)/ C. 帯精
		製アルミニウム中の残存不純物…(91)
		文 献 ············ 94
9	· 歪	焼 鈍 法 武内朋之・竹内 伸・出口考彦・紀 隆雄
	9.1	純 鉄······· 97
		A. 原理…(97)/ B. 温度傾斜炉…(99)/ C. 純鉄単結晶を大量に作成し
		た例…(100)
	$9 \cdot 2$	鉄 合 金 ······ 102
		A. 原理および特徴…(102)/ B. 試料の前処理法…(103)/ C. 最終焼鈍
		…(104)/ D. 鉄合金に関する実例…(105)
	$9 \cdot 3$	歪焼鈍法によるアルミニウム単結晶の製作 107
		A. 製作法…(107)/ B. 高完全度アルミニウム単結晶の製作法…(111)
		文 献
1	0. 蒸	着法による薄膜単結晶 矢田慶治
	10.1	はじめに 115
	$10 \cdot 2$	格子像に必要な膜厚の最適値
	10.3	金属薄膜単結晶
		A. 2 段法 (Pashley の方法) によるもの…(118)/ B. 1 段法によるもの
	10 4	…(122)
		金属2重膜および合金薄膜単結晶
	10.5	非金属の単結晶薄膜
		文献

11.	S	げ	結	晶								吉	田	和	彦
11	•1	ひげ糸	吉晶の	特色と	物性研	千究			• • • • • •	• • • • • •	•••••				• 125
11	• 2	水素還	置元法		• • • • • • • •	•••••		•••••	• • • • • •	• • • • • •	• • • • • •	•••••			· 126
		A. 7	ブレナー	-法…(126)/	В. \	VLS :	機構…	(128))					
11	• 3	蒸着	法	• • • • • • •		•••••	••••	•••••	•••••	• • • • • •	• • • • • •	•••••			129
11	•4	その	他一	• • • • • • • •	• • • • • • • •	•••••		•••••		• • • • • •		•••••	• • • • • •		· 131
		A. 水	く溶液カ	3らの反	支長…(131)/	В.	真正で	ひげ結	:晶…	(131)				
11	• 5	結び	ř	• • • • • •	••••••	•••••	•••••	•••••	•••••	•••••	• • • • • •	•••••	•••••		131
		油 文	•••••	•••••	•••••	•••••		•••••	•••••	• • • • • •	• • • • • •	•••••	• • • • •		132
12.	焼釒	純によ	る完	全化								北	島	貞	吉
12	•1	まえか	・・ き	• • • • • • •	••••••	•••••	•••••	• • • • • •	•••••	• • • • • •	• • • • • •	•••••	• • • • •	•••••	135
12	• 2	転位の	消滅i	過程		•••••	•••••		•••••	• • • • • •	• • • • • •		• • • • •		136
12	• 3	結晶の	育成。	と整形		•••••			•••••	• • • • • •	• • • • • •	•••••	• • • • •		138
12	- 4	熱サイ	クルり	尭鈍		•••••	•••••	• • • • • •	• • • • • •	• • • • • •	• • • • • •	•••••	••••		13 9
		文献		•••••					•••••	• • • • • •	• • • • • • •	•••••	•••••	•••••	142
13.	結晶	晶の切	断と	研摩								井	村		徹
13	•1	ウェッ	トスト	レッド	法(無	歪切	断)		,	• • • • • •	• • • • • •	• • • • • •	••••	•••••	146
13	· 2	放電加	1工法	•••••		•••••	•••••	•••••	••••	• • • • • •	• • • • • •	•••••	••••		147
		A. 7	イヤー	電極に	よる結	晶の均	刃断…	(148)	/ B	. アシ	/ッド:	カッタ	ح – ا	の比	
		較…(149)												
13.	3	マルチ	ワイー	ヤソー	•••••	•••••	•••••	•••••	• • • • •	• • • • • •	• • • • • •	• • • • • •	••••	•••••	149
13.	4	無歪研	摩 …	• • • • • • •					• • • • • •	• • • • •	• • • • • • •	• • • • • •	•••••		151
		1 文	• • • • • • •	• • • • • • •	•••••	• • • • • •		•••••	• • • • • •	• • • • • •	• • • • • •	• • • • • •			153

x

III. 格子欠陥の観察と測定

14	4. 長	さと格子定数の精密同時測定による原子空孔濃	度₫	決	定	
			稔	野	宗	次
	14.1	方法の原理 (Simmons-Balluffi の方法)	•••••	••••	••••	· 155
	$14 \cdot 2$	測定上の注意事項	•••••			156
	14.3	装置の構造				· 157
	14.4	実験の手順	••••	· • • • • •	••••	159
	14.5	測 定 例	•••••		•••••	· 160
		文 献	••••	• • • • •	••••	• 161
1	5. 陽	電子消滅による格子欠陥の実験	堂	Ш	昌	男
	15.1	はじめに	• • • • •	• • • • •	•••••	• 163
	15.2	陽電子源	••••	••••		· 164
	15.3	γ-γ 角相関	••••	• • • • •		· 164
	15.4	消滅ァ線のエネルギー分析		• • • • •	• • • • •	· 166
	15.5	陽電子寿命測定	••••	••••	• • • • •	• 167
	15.6	陽電子消滅に及ぼす格子欠陥の影響	••••	• • • • •		• 167
	15.7	トラッピング模型			• • • • •	• 168
	15.8	純金属および合金中の原子空孔	••••			• 169
	15.9	希薄合金中の原子空孔と原子空孔一不純物原子対 …	••••		• • • • • •	• 172
	15.10	不純物原子による陽電子トラッピング	••••	••••	• • • • • •	• 172
	15.11	時効現象		••••		172
	15.12	溶融金属, 非晶質金属	••••	••••	• • • • •	• 173
	15.13	照射損傷		••••		• 173
	15.14	転位,塑性変形,疲労		• • • • •		. 174

16. N	MR による格子欠陥の研究	深	井	有
16.1	アルカリハライド中の不純物――格子歪の研究			180
16.2	金属中の不純物――しゃへい電荷の研究			184
16.3	原子拡散の研究	•••••		186
	文 献		•••••	191
17. ES	R による点欠陥の研究	平	田	光 児
17.1	E 中心による吸収線	•••••	• • • • • •	195
$17 \cdot 2$	E 中心の構造			197
17.3	ESR の測定装置			199
	文 献		••••	203
18. メ	スバウアー効果による格子欠陥の研究	藤	田	英一
18.1	無反跳 γ 線放射と吸収		• • • • • •	205
18.2	線源および吸収体として使用できるアイソトープ・		• • • • •	206
18.3	測定装置と測定すべき量		•••••	207
18.4	測 定 例		• • • • • •	209
	文 献			209
19. チ	ャネリングによる格子欠陥の研究	伊	藤	憲昭
19.1	チャネリングの原理		• • • • • •	211
19.2	チャネリング効果の検出			212
19.3	完全結晶におけるチャネリング	• • • • • • • •	•••••	214
19.4	粒子束分布と格子欠陥構造の決定		•••••	216
19.5	格子間型欠陥量の決定	• • • • • • • •	•••••	218
	文 献	• • • • • • • •	• • • • • •	219

20. 電	界イオン顕微鏡	中	村	勝	吾
$20 \cdot 1$	緒 言		••••		· 221
20.2	FIM の原理 ······				· 222
	A. 電場電離現象…(222)/ B. FIM の構造と結像条件…(2	23)/	C.	FIN	1
	像の明るさと分解能…(225)				
20.3	電場蒸発現象と実験技術	• • • • • •	••••	••••	· 226
	A. 電場蒸発法…(226)/ B. 実験技術…(228)				
$20 \cdot 4$	格子欠陥の観察	•••••	••••	••••	. 229
	A. 種々の型の FIM 像の異状…(229)/ B. 点欠陥の観察	··· (23	80)/	C.	
	線,面欠陥の観察…(231)/ D. 不純物原子の観察…(231)/	/ E.	その)他σ)
	応用···(232)				
	文 献	•••••		••••	· 232
21 海	過電子顕微鏡観察 吉田 鋿·井村	44.	144 十	- / m %	- 1 17
בע יוב	過電子頭微鏡観察 吉田 鋿・井村 藤田広志・吉田		简本	NOTO	
$21 \cdot 1$. 925
21°1	吸小人間の観察 A. 序…(235)/ B. 電子顕微鏡観察における問題点…(236				
	A. 序 ⁽¹⁾ (200)/ D. 電丁頭飯蜆鼠祭におりる同題点 ⁽¹⁾ (200) 微鏡透過試料の製作法···(237)/ D. 空孔集合体の形成機構	5) ()			
	空孔集合過程の実験的研究…(240)/ F. 微小欠陥の形状の	1545 D255	15,000		
21.2	透過電子顕微鏡動観察とその応用	• • • • • •			· 243
	A. 動観察·記録法…(245)/ B. 動観察のための試料処理	装置…	· (24	7)/	
	C. 動観察の応用…(251)				
$21 \cdot 3$	高分解能像	• • • • • •		••••	· 254
	A. 格子欠陥の高分解能像を得る条件…(254)/ B. 多波	象と枠	各子修	良と新	<u>+</u>
	晶構造像…(255)/ C. 高次反射励起の明視野像…(260)/	D .	浮し	/ベ 川	
	の膜厚変化を写す方法…(261)/ E. 暗視野照明による小人			: 格子	_
	欠陥観察法…(263) / F. 2次反射消滅臨界電圧における像	7.66.C. 150	50%		
$21 \cdot 4$	超高電圧電子顕微鏡			••••	· 265
	A. 電顕法の精度の向上…(266)/ B. 観察可能な試料厚		28 76		
	電圧…(268)/ C. 電顕内試料処理装置とそれによって開た 空分野…(271)/ D. 電子線による四射場像よその広田…(新し	ノぐり付	1
	究分野…(271)/ D. 電子線による照射損傷とその応用…(210)			

且	<u>次</u>	xiii
21.5	ウィークビーム法	274
	A. 原理…(275)/ B. 方法…(276)/ C. 転位の観察と位置決定…(278)/
	D. 拡張転位の観察…(279)/ E. 欠陥クラスターおよび析出分の観察…	•
	(282)	
	文 献	282
22. X	線回折顕微法 角野浩二・東 晃・福田	明治
$22 \cdot 1$	Ge, Si 結晶中の転位の観察	289
	A. 緒言…(289)/ B. 方法…(290)/ C. 試料…(292)/ D. 写真法に	よ
	る観察…(292)/ E. X線 T.V. による観察…(293)	
$22 \cdot 2$	氷単結晶中の転位の観察	295
	A. 氷の特殊性…(295)/ B. ラングカメラによる氷単結晶中の転位の観	察
	…(296)/ C. 応力下における転位の運動の観察…(298)	
	文 献	301
23. X	線ラインプロフィル 中島耕一・佐藤	准
	看層欠陥 (粉末試料) ····································	
40.1		
	A. 積層欠陥の解析…(304)/ B. 積層欠陥頻度の測定…(307)/ C. 単 晶内の積層欠陥頻度の測定…(309)	活
คว ค	内 部 歪	200
23.7		309
	A. 回折強度曲線の解析…(309)/ B. 解析法の検討…(311)	
$23 \cdot 3$	積層欠陥を含む単結晶のX線散漫散乱の測定	312
	A. はじめに…(312)/ B. 理論計算…(314)/ C. 単結晶の測定実験…	
	(315) / D. 結び…(320)	
	文 献	·· 320
24. 食	凹による転位の観察 丸川健三郎・大竹周一・広川ス	友雄
	山田朝治・三原 稔	
$24 \cdot 1$	Cu とその合金	·· 323
	A. 試料準備と観察の手順…(323)/ B. 観察例…(325)/ C. 転位速度の	D
	測定…(327)	

$24 \cdot 2$	Bi の食凹観察	329
	A. 腐食方法…(330)/ B. 食凹の錐面…(331)/ D. 2重腐食法…(335)	面…(330)/ C. 黒い食凹と白い食凹
$24 \cdot 3$	Sn の食丘	
	A. 食丘…(335)/ B. 食丘の発生例… …(336)/ D. 食丘による転位の挙動。	
24 • 4	イオン結晶	
	A. 試料の準備…(344)/ B. 腐食法… D. 実験例…(347)	·(345)/ C. 化学研摩···(347)/
24.5	化合物半導体	
	A. はじめに…(349)/ B. 試料の選択	···(350)/ C. 観察面の選択···(351)
	/ D. 試料の前処理…(351)/ E. 食食操作における注意…(354)	· 凹用腐食液の選定…(352)/ F. 腐
	文 献	355
25. 弓	張試験その他の機械試験	成田舒孝・武内朋之・角野浩二 鈴木敬愛・三原 稔・吉田和彦 後藤芳彦・蔵元英一・鈴木秀次
$25 \cdot 1$	FCC 金属の引張および圧縮試験 …	359
	A. すべり変形…(360)/ B. 不均質変た実験…(363)	変形…(362)/ C. 引張試験機を用い
$25 \cdot 2$	BCC 金属の引張試験	365
	A. 原理…(365)/ B. 試験機…(365) 果の一例…(368)/ E. 引張試験に付限 果の解析に関する注意…(369)	
$25 \cdot 3$	共有結合結晶 (Ge, Si, InSb) ·······	369
	A. 共有結合結晶の塑性変形の特徴… 変形方法…(372)	(369)/ B. 試料作製…(370)/ C.
25.4		
	イオン結晶の圧縮試験	375

,	目	<u>次</u>	xv
		力…(380)	
	$25 \cdot 5$	曲げ試験	38
		A. 曲げ試験の特徴…(381)/ B. 曲げ試験装置…(382)/ C. 曲げ試験における試験片中の応力…(383)/ D. 曲げ試験の応用…(384)	
8	25.6	ひげ結晶の引張試験とすべり線の観察	385
		A. ひげ結晶の引張試験…(385)/ B. ひげ結晶のすべり線観察…(389)	
	$25 \cdot 7$	1K以下における引張試験	392
	0 0	A. 1K 以下の冷凍…(392)/ B. 引張試験用 ³He クライオスタット… (393)/ C. 実験の手順…(395)/ D. 実験上の注意, 測定例…(396)	
	25.8	固体ヘリウムの塑性変形	397
		A. ヘリウムの特殊性…(397)/ B. 測定装置…(398)/ C. 測定結果の解析法…(401)	
		文献	4 03
26	・超	音波吸収と音速測定 生嶋 明・比企能夫・小岩昌宏・守屋 優	建
2	26 • 1	超音波吸収	407
		A. 超音波吸収の測定…(407)/ B. 測定に際しての具体的な事柄…(411)	
2	26 • 2	高圧下の超音波吸収	416
		A. 高圧下の超音波測定…(416)/ B. 実験装置および測定法…(418)/ C. 測定例…(419)	
2	26.3	低周波内部摩擦(ねじり振り子法)	421
		A. 内部摩擦のあらわし方…(422)/ B. 装置例と実験法…(422)/ C. 各種の振動検出方式と自動化…(428)	
2	26 • 4	音速の微小変化	429
		A. 音速測定の原理…(429)/ B. 装置の例…(432)/ C. 鉛についての実験例…(434)	
		文 献	436
7.	拡	数係数の測定 平野賢一・吉田正幸・荒井英朝	肅
2	7.1	金属の拡散係数	

		類…(439)/ B. 自己拡散係数および不純物拡散 相互拡散係数の決定…(444)/ D. Fick の法則
$27 \cdot 2$	Si の拡散係数	447
	A. 格子間型金属不純物· Ⅲ族およびV族不純物…	··(447)/ B. 空孔型自己拡散係数···(449)/ C. (450)
	文 献	454
28. 電	気 抵 抗	古 川 弘 三·河部本 悟
28 · 1	電気抵抗の測定	457
	A. 抵抗率増加量の測定 抵抗測定回路の一例…(4	…(457)/ B. 測定上の注意点…(459)/ C. 直流 61)
28 · 2	電気抵抗の自動測定・	461
	NT 52 90 VI	B. 交流による電気抵抗変化量の自動測定…(462) 抗の自動測定法…(465)/ D. おわりに…(467)
	文 献	467
29. 熱		
****	伝 導	
****	伝 導 イオン結晶の低温の熱 A. 熱伝導度の測定法…	鈴木敬愛・松尾 徹・比企能夫 伝導 469 (470)/ B. クライオスタット…(470)/ C. 温度計
29 · 1	伝 導 イオン結晶の低温の熱・ A. 熱伝導度の測定法… および測定…(472)/ D.	鈴木敬愛・松尾 徹・比企能夫 伝導
29 · 1	伝 導 イオン結晶の低温の熱・ A. 熱伝導度の測定法・・・ および測定・・・(472)/ D. 半 金 属 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	鈴木敬愛・松尾 徹・比企能夫 伝導 ····································
29.1	伝 導 イオン結晶の低温の熱 A. 熱伝導度の測定法… および測定…(472)/ D. 半 金 属 A. 概説…(475)/ B. 記	鈴木敬愛・松尾 徹・比企能夫 伝導
29.1	伝 (本) 導 イオン結晶の低温の熱・A・熱伝導度の測定法・・・ および測定・・・(472)/ D・ 半 金 属・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	鈴木敬愛・松尾 徹・比企能夫 伝導
29.1	伝 (A) (鈴木敬愛・松尾 徹・比企能夫 伝導
29.1	伝 導 イオン結晶の低温の熱 A. 熱伝導度の測定法… および測定…(472)/ D. 半 金 属 A. 概説…(475)/ B. 記 金属の熱伝導(交流法) A. 交流法による熱伝導び測定方法…(481)/ C.	鈴木敬愛・松尾 徹・比企能夫 伝導 469 (470)/ B. クライオスタット…(470)/ C. 温度計 実験誤差…(473)/ E. 熱伝導度の解析…(474) 475 本, 比熱の測定原理…(479)/ B. 測定装置およ
29·2 29·3	伝 導 イオン結晶の低温の熱 A. 熱伝導度の測定法… および測定…(472)/ D. 半 金 属 A. 概説…(475)/ B. 記 金属の熱伝導(交流法) A. 交流法による熱伝導び測定方法…(481)/ C.	鈴木敬愛・松尾 徹・比企能夫 伝導
29·2 29·3	伝 イオン結晶の低温の熱 A. 熱伝導度の測定法… および測定…(472)/ D. 半 金 属 A. 概説…(475)/ B. 記 金属の熱伝導(交流法) A. 交流法による熱伝導 び測定方法…(481)/ C. 文 献 積エネルギー	鈴木敬愛・松尾 徹・比企能夫 伝導

7200			1.5 (V•••					
目	<u></u>		xvii					
$30 \cdot 2$	等速昇温法による蓄積エネルギーの測定		488					
	A. 試料の作成…(488)/ B. 自動差動熱量計の原理と C. 測定結果例と格子欠陥の消失…(490)	測定法…(48 9	?)/					
30.3	等温法による蓄積エネルギーの測定		493					
	A. はじめに…(493)/ B. 方法の原理…(493)/ C. 等験の手順…(495)/ D. 測定例 (497)	温熱量計お。	よび実					
	文献	• • • • • • • • • • • • • • • • • • • •	499					
	IV. 格子欠陥の導入							
1. 急	冷 法 下村義治・中村藤伸・	木村 宏・	新宮秀夫					
$31 \cdot 1$	固体試料の急冷 I	••.	501					
	A. 急冷による格子欠陥生成における問題点…(501)/…(502)/ C. 垂直炉急冷法…(503)/ D. 原子空孔集析に便利な急冷法…(504)/ E. ガス不純物による汚染F. パルス加熱法…(506)	《合体形成過 》	程の解					
$31 \cdot 2$	固体試料の急冷Ⅱ		507					
	A. 加熱・急冷法…(507)/ B. 冷却速度…(507)/ C. および注意…(508)	焼入れ法の	問題点					
31 · 3	液体へリウムⅡによる急冷	•••••••••	510					
	A. 方法の特徴…(510)/ B. 試片…(511)/ C. 加熱とD. 他の方法との比較…(513)/ E. 他の金属合金への)/					
$31 \cdot 4$	液体状態からの急冷		514					
-	A. 冷却方法…(514)/ B. 非晶質合金の形成…(515)							
	文 献		517					
2. 加		三浦	精					
	一 加工による転位の増殖 ····································							
~ T			020					

32.2 塑性変形による点欠陥の形成 …………………… 521

A. 変形量と点欠陥の濃度…(521)/ B. 点欠陥の形成機構…(521)/ C.

		17 IV 1970		===0
	白金の加工による点欠陥の導入と回復…(522)			
$32 \cdot 3$	積層欠陥の形成	•••••	••••	524
	文 献	•••••		525
33. 電	子線照射	計 田	忠	夫
33.1	電子照射による固体の原子のはじき出し		•••••	527
	A. 電子-原子衝突…(527)/ B. はじき出しの限界エネルギー	(528	3)/	
	C. はじき出しの断面積…(529)/ D. はじき出しのカスケー	ド … (53	30)	
$33 \cdot 2$	電子照射実験における注意事項	•••••	•••••	532
	A. 電子エネルギーの測定…(532)/ B. 照射量の測定…(532)			
	ムの調整…(532)/ D. 2次電子と後方散乱電子…(533)/ I	5. 電子	-の多	
22.2	重散乱…(533) 四 射 田 カ ニ ノ ナ フ カ 、 ト			525
29.9	照射用クライオスタット ····································			333
	A. 熱伝等及…(333)/ D. 電気塩乱…(330)/ C. 電気磁気 / D. 格子定数,長さ,X線散乱など…(538)/ E. 引張試験			
	F. ESR, 光伝導など…(539) / G. 蓄積エネルギー…(539)	25		
	文 献	•••••		542
34. 中	性子照射	Į H	重加	隹
$34 \cdot 1$	中性子と物質の相互作用	•••••	••••	54 5
$34 \cdot 2$	中性子源	•••••	••••	548
$34 \cdot 3$	生成されるフレンケル欠陥の量と分布	•••••	••••	549
$34 \cdot 4$	試料の誘導放射能	•••••	• • • • • •	552
34.5	低温照射	•••••	• • • • • •	5 52
	A. 低温照射装置…(552)/ B. 測定の方法…(555)/ C. 原研	での測	定例	
	(557)			
34.6	電子照射との違いと問題点	•••••		558
	文 献			561

35.	超高	圧電子顕微鏡内電子照射	桐谷道雄·	坂 公	恭
35	·1 電	 圓顕内照射実験の特徴の利点	• • • • • • • • • • • • •		56 5
35	·2 原	限射条件の制御とその測定法 ······		•••••	567
		A. 照射強度の測定と観察記録…(567)/ B. 高温およ 測定…(568)/ C. 電子ビームによる試料の温度上昇…		と温度	
35	・3 蕉	鼠察結果の分析			571
		A. 試料表面の効果…(571)/ B. 集合体欠陥の数密度の 欠陥の3次元的分布の測定…(573)/ D. 転位ループの			
35	·4 构	各子欠陥の挙動の抽出	• • • • • • • • • • • •		577
		A. 各種現象の定量観察例…(577)/ B. この項のおわり) に… (578)		
35	·5 電	電顕内照射によって導入された欠陥と転位との相 3	互作用の動	的観察	Z.
			• • • • • • • • • • • • • • • • • • •	•••••	579
		A. はじめに…(579)/ B. 実験方法の概要…(580)/ C D. 試料の作製法と引張装置への装着法…(581)/ E. :	1/50 R 525 - N "		1
	艾	と 献		••••••	584
付	録				
		化学研摩液			
		金属の食凹用腐食液			
		非金属の食凹用腐食液・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			
	4.	電子顕微鏡透過観察用試料の電解研摩法	• • • • • • • • • • • •		606
索	引				611