Contents | Part I | Physiological Rhythmicity and Synergetics | | |---|---|-----| | anni an in 1960 ann an | of Rhythms and Control Systems: An Integrative Approach oepchen (With 12 Figures) | 3 | | | s – Can It Help Physiology?
en (With 7 Figures) | 21 | | Part II | Cardiovascular Rhythms | | | By G. Sieg | nicity in Blood Vessels: Its Biophysical and Biochemical Bases gel, H.W. Hofer, A. Walter, K. Rückborn, and H.P. Koepchen (With 25 Figures) | 35 | | of the Sym | Rostroventrolateral Medulla in the Generation of Rhythmicities pathetic Activity bski and S. Baradziej (With 5 Figures) | 61 | | of Human | e Methods for Studying Rhythmic Nervous Control
Circulation
Iqvist (With 4 Figures) | 69 | | as a Dynan | Pressure System of the Mammalian Circulation nic Self-Organizing System nid-Schönbein and S. Ziege (With 7 Figures) | 77 | | and Barore | nalysis of Circulatory Rhythms flex Sensitivity in Man zíková and B. Fišer (With 4 Figures) | 97 | | Spectral Ar
Neural Car | nalysis of Cardiovascular Variables as a Tool to Quantify diovascular Control in the Laboratory and Real Life Conditions ani, O. Rimoldi, P. Pizzinelli, D. Lucini, and A. Malliani | 103 | | and Linear | ratory Variability: Fractals, White Noise, Nonlinear Oscillators, Modeling. What's to Be Learned? ul (With 10 Figures) | 115 | | J. J. 1. Sa | ui (11 iui 10 1 iguios) | 115 | | Spectral Analysis as an Assessment of the Neural Control of the Heart:
A Methodological Comparison
By R. Stark and D. Vaitl (With 1 Figure) | | | | | |---|--|-----|--|--| | Possible Implica | ansients, Attractors, and Entropy:
ations for Cardiovascular Dynamics
With 11 Figures) | 139 | | | | Part III R | Respiratory Rhythms | | | | | 1870 | System – Features of Modulation and Coordination With 7 Figures) | 155 | | | | Experiments in A | of Respiratory Rhythm – Animals and Models (With 13 Figures) | 165 | | | | | of Deterministic Breathing Patterns, Jr. (With 12 Figures) | 177 | | | | Part IV M | Iotor Coordination | | | | | with Special Ref
By J.A.S. Kelso, | mics of Biological Coordination ference to Phase Attraction and Intermittency G.C. DeGuzman, and T. Holroyd (With 9 Figures) | 195 | | | | | of Rhythm in Motor Actions . Vogt and P. Kruse (With 15 Figures) | 215 | | | | Part V B | asis of Circadian Rhythmicities | | | | | Sleep Rhythms: | veen Human Circadian and (About 90 min) Problems in the Simulation and the Analysis (With 10 Figures) | 235 | | | | Part VI R | hythms in Electrical Activity of the Brain | | | | | The Information By H. Petsche (V | Content of the Human EEG
With 1 Figure) | 257 | | | | Topographic and | voked Alpha and Theta Rhythms in the Brain:
Modality-Dependent Aspects
Basar-Eroglu, E. Rahn, and M. Schürmann) | 273 | | | | EEG Rhythms –
By G. Pfurtschell | Event-Related Desynchronization and Synchronization ler (With 7 Figures) | 289 | | | | | | | | | | Part VII | Rhythms in Perception | | |---|--|-----| | of Perceptua | al Modification and Synergetic Modelling al Oscillations a, M. Stadler, and D. Strüber (With 13 Figures) | 299 | | Part VIII | Aspects of Systems Theory | | | • | oral EEG Patterns
rich, A. Fuchs, and H. Haken (With 15 Figures) | 315 | | Information Processing by Systems with Chemical Communication By A.S. Mikhailov | | 339 | | Criteria for to By Yu.L. Kl | the Relative Degree of Order in Self-Organization Processes imontovich | 351 | | Index of Co | ntributors | 363 | 528 € ₫¥