Contents

Prej	ace	• •		• •	•••	•••	••	• •	••	••	••	v	
List	of Symb	ols	••	••	••	•••	••	• •	••	••	••	xi	
I.	Intro	ductio	on		••	••		••	••			1	
II.	Survey of High-Field Effects												
	1. Effect of High Fields on the Velocity Distribution of the Carriers												
	2. Mol	oility in	High I	DC Fie	lds							15	
	3. High	h-Frequ	iency C	onduct	tivity in	h High	Fields					34	
	4. "Th	nermoel	ectric E	ffect "	of Ho	t Carrie	ers					45	
	5. Effe	cts Peci	uliar to	the M	any-Va	lley Ba	nd Str	ucture				49	
	6. Effe	cts Peci	uliar to	p-Ge		••						59	
	7. Effe	cts Du	e to a	Magne	etic Fie	eld Sup	perimp	osed o	n a H	igh Ele	ctric		
	Fiel	d	• •		••	•••						72	
	8. Neg	ative R	esistivit	y and	the Gu	inn Effe	ect					80	
	9. Mis	cellaned	ous Effe	cts	• •			•••	••		•••	99	
Ш.	Interaction of the Carriers with the Scattering Mechan- isms											105	
	1. The Momentum Relaxation Time for Acoustic Scattering: The Simple												
	Mo	del	••	••	••		• •	••	• •	••	••	105	
	2. The	Mome	ntum R	elaxati	ion Tin	nes for	Acous	tic Mo	de Scat	tering:	The		
	Mai	ny-Valle	ey Mod	el	• •	• •	••	••	••	••	••	112	
	3. The	Zero P	oint La	ttice		· • •	••	••	••	••	••	116	
	4. Rate of Energy Loss to Acoustic Modes: Simple and Many-Valley												
	Moo	dels	••	••	•••		••	•••	•••	••	••	119	
	5. Dist	urbanc	e of the	Phone	on Dist	tributio	n by th	ne Hot	Carrie	rs	••	127	
	6. Opt	ical Mo	de and	Interv	alley S	catterir	ng	••	••	••	••	149	
IV.	Some Comparisons of Theory with Experiment												
	1. Ded	uctions	from (Conser	vation	of Ener	gy		1.2			161	
	2. Mol	oility V.	ariation	s in G	ermani	um	· · ·					165	
	3. The	Regior	of Co	nstant	Drift V	elocity	and th	ne Anis	stropy i	n n–Ge	÷	187	
	4. Pola	r Semi	conduct	ors								197	
	5 Mic	rowave	Condu	ctivity	in Hig	h DC	Fields					204	

CONTENTS

V. Formulation and Solution of the Boltzmann Eq	uatio	n	210							
1. General Considerations			210							
2. Collision Operator for Acoustic Modes		• •	218							
 Collision Operator for Optical and Intervalley Scattering										
n-Ge	• •	• •	231							
6. The Coupled Equations for Carrier and Phonon Distributions: Solution										
for Small Disturbances	••		238							
7. Solution for Polar Optical and Intervalley Scattering; Application to										
GaAs	••	• •	248							
8. Treatment of Impurity Scattering and Electron-Electron Interactions										
9. Microwave Conductivity in High DC Fields	••	••	272							
10. Electromotive Force Due to an Electric Field Gradient	• •	• •	276							
			202							
Author Index	••		203							
Subject Index	••	• •	288							