目 次

	1. 多体問題とは	1~27
1-1	はじめに・・・・・ 1	
1-2	ハミルトニアンと密度行列・・・・・ 2	
1-3	波動関数の対称性と、Fermi および Bose 粒子・・・・・ 6	
1-4	独立粒子系の性質・・・・・ 10	
1-5	物性論における多体問題の典型例・・・・・ 14	
	a) 金属内の伝導電子・・・・・ 14	
	b) 超伝導 18	
	c) 液体ヘリウム・・・・・ 20	
	d) Heisenberg モデル・・・・・ 21	
	演習問題 1 27	
	2. 第二量子化	28~34
2-1	数表示 28	
2-2	Fermi 粒子系····· 29	
2-3	Bose 粒子系····· 32	
2-4	第二量子化····· 33	
	演習問題 2. · · · · · 34	
	3. 変分法	35~48
3-1	一般的な原理・・・・・ 35	
3-2	Bose 粒子系における Feynmann の方法 37	
3-3	超伝導の BCS 理論・・・・・ 41	
3-4	有限温度における変分法・・・・・ 45	
	演習問題 3. · · · · · 48	
	4. Hartree-Fock 近似	49~69
4-1	一般的な原理・・・・・ 49	
4-2	第二量子化における Hartree-Fock 近似・・・・・ 51	

4-3	有限温度における Hartree-Fock 近似 54
4-4	超伝導における Bogoljubov の理論
	(一般化された Hartree-Fock 近似)・・・・・ 57
4-5	Heisenberg モデルでの分子場近似・・・・・ 62
4-6	Bose 粒子系における Hartree-Fock 近似・・・・・・ 65
	演習問題 4 69
	5. 摂動展開 70~102
5-1	不完全気体とビリアル展開・・・・・ 70
5-2	量子力学におけるいろいろな表示・・・・・ 76
5-3	相互作用表示における変換関数・・・・・ 78
5-4	断熱定理····· 79
5-5	基底状態における物理量の計算・・・・・ 82
5-6	Wick の定理 86
5-7	Feynmann グラフ・・・・・ 88
5-8	運動量空間における Feynmann グラフ····· 93
5-9	Bose 粒子系における Feynmann グラフ・・・・・ 96
5-10	有限温度における摂動展開・・・・・ 99
	演習問題 5 102
	6. Green 関数 103~128
6-1	いろいろな Green 関数の定義 103
6-2	Green 関数の性質・・・・・ 105
6-3	Green 関数を使っての物理量の計算・・・・・ 114
6-4	Green 関数に対する摂動展開 119
	演習問題 6 128
	7. Green 関数に対する
	Feynmann グラフの応用 129~154
7-1	Hartree-Fock 近似 129
7-2	剛体球の取り扱い (はしご近似)・・・・・ 131
	電子気体 (Coulomb 相互作用, リング近似)・・・・・ 138
7-4	相互作用のある Bose 粒子系・・・・・ 150
	演習問題 7 154

	8. Green 関数に対する別の近似	155~176
8-1	Green 関数の運動方程式・・・・・・ 155	
3-2	Hartree-Fock 近似····· 156	
3-3	超伝導に対する Gor'kov の方法 157	
3-4	Ginzburg-Landau 方程式の導出・・・・・ 161	
8-5	Heisenberg スピン系 (強磁性)・・・・・ 169	
	演習問題 8 176	
	9. 素励起,集団運動	177~196
9-1	基本的な考え方・・・・・ 177	
	相互作用のある Fermi 粒子系・・・・・ 180	
	Heisenberg 強磁性体····· 189	
9-4	多粒子系に対する Bose 粒子近似・・・・・ 194	
	演習問題 9. · · · · 196	
	10. 線形応答	197~208
10-1	一般論 197	
10-2	電気伝導度・・・・・・ 200	
10-3	3 電子気体における遮蔽効果・・・・・ 202	
10-4	- 磁場に対する応答,帯磁率・・・・・ 205	
	演習問題 10 208	
	参考書	209
	演習問題解答	211~231
	索引	233~235