

# **CONTENTS**

| Chapter 1.  | What are string theories? H. NICOLAI                                                                             | 1   |
|-------------|------------------------------------------------------------------------------------------------------------------|-----|
| Chapter 2.  | Dynamical and statistical aspects of intermediate energy nucleus-nucleus collisions C. K. Gelbke and D. H. Boal  | 33  |
| Chapter 3.  | Fragmentation of single-particle and collective motions in the quasiparticle-phonon nuclear model V. G. Soloviev | 107 |
| Chapter 4.  | Are the low-lying isovector 1 <sup>+</sup> states scissor vibrations?  A. FAESSLER and R. NOJAROV                | 167 |
| Chapter 5.  | Synthesis and study of atomic nuclei with Z>100 G. N. FLEROV and G. M. TER-AKOPIAN                               | 197 |
| Contents of | Previous Volumes                                                                                                 | 241 |



## Dynamical and Statistical Aspects of Intermediate Energy Nucleus-Nucleus Collisions

#### CLAUS-KONRAD GELBKE\* and DAVID H. BOAL†

\*Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan, 48824, U.S.A. †Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

#### ABSTRACT

Recent experimental and theoretical results for intermediate energy nucleus-nucleus collisions (E/A=20-200 MeV) will be reviewed. The experimental topics include incomplete fusion reactions, linear momentum transfer measurements, non-equilibrium light and complex particle emission, sub-threshold pion production, high-energy photon emission, and particle correlations at large and small relative momenta. The theoretical discussion covers thermal models, liquid-gas phase transitions, transport equations, numerical simulations, two-particle correlation functions and cluster formation.

#### KEY WORDS

Intermediate energy nucleus-nucleus collisions; incomplete fusion; nonequilibrium particle emission; liquid-gas phase transition of nuclear matter; entropy production; numerical simulations; two-particle correlation functions; populations of excited states.

#### CONTENTS

| 1.  | INTRODUCTION                                                        | 34   |
|-----|---------------------------------------------------------------------|------|
| 2.  | INCOMPLETE FUSION REACTIONS                                         | 35   |
|     | 2.1. Angular momentum deposition                                    | 36   |
|     | 2.2. Systematics of linear momentum transfer                        | 36   |
|     | 2.3. Energy deposition                                              | 39   |
| 3.  | REACTION DYNAMICS                                                   | 40   |
|     | 3.1. Statistical models                                             | 40   |
|     | 3.2. Reaction trajectories - two illustrative models                | 42   |
|     | 3.3. Numerical simulations                                          | 41   |
| 4.  | NONCOMPOUND LIGHT PARTICLE EMISSION                                 | 48   |
|     | 4.1. Inclusive light particle distributions                         | 48   |
|     | 4.2. Deflection by the mean field                                   | 53   |
|     | 4.3. Light particle correlations at large relative momenta          | 57   |
| 5.  | EMISSION OF PIONS AND HIGH ENERGY PHOTONS                           | 61   |
|     | 5.1. Emission of pions                                              | 61   |
|     | 5.2. Emission of high energy photons                                | 63   |
| 6.  | EMISSION OF INTERMEDIATE MASS FRAGMENTS                             | . 64 |
|     | 6.1. Mass distributions                                             | 64   |
|     | 6.2. Coincidence measurements with intermediate mass fragments      | 67   |
|     | 6.3. Liquid-gas phase transition                                    | 69   |
|     | 6.4. Towards microscopic descriptions of fragmentation              | 72   |
| 7.  | POPULATION OF EXCITED STATES                                        | 77   |
|     | 7.1. Population of particle stable states                           | 78   |
|     | 7.2. Population of particle unbound states                          | 79   |
| 8.  | TWO-PARTICLE CORRELATION FUNCTIONS                                  | 85   |
|     | 8.1. Two-particle correlation functions from inclusive measurements | 86   |
|     | 8.2. Coulomb distortions                                            | 9:   |
|     | 8.3. Reaction filters                                               | 93   |
| 9.  | CONCLUSION                                                          | 96   |
| ACI | KNOWLEDGEMENTS                                                      | 91   |
| RE  | FERENCES                                                            | 98   |
|     |                                                                     |      |

### CONTENTS

| INTRO     | DDUCTION                                    | 100   |
|-----------|---------------------------------------------|-------|
| CHAPTER 1 | QUASIPARTICLE - PHONON NUCLEAR MODEL        | 109   |
|           | Introduction                                | 109   |
|           | Transformation of the QPNM Hamiltonian      | 109   |
|           | Specific features of the QPNM               | 114   |
|           | The QPNM equations for spherical nuclei     | 117   |
| CHAPTER 2 | DESCRIPTION OF SPHERICAL NUCLEI IN THE QPNM | 131   |
|           | Introduction                                | 131   |
|           | Widths of electric giant resonances         | . 131 |
|           | Magnetic resonances                         | 134   |
|           | Fragmentation of charge-exchange states     | 137   |
|           | Neutron strength functions                  | 139   |
|           | Fragmentation of one-quasiparticle states   | 143   |
|           | Fragmentation of two-quasiparticle states   | 145   |
|           | γ-Decay of highly excited states            | 147   |
| CHAPTER 3 | DESCRIPTION OF DEFORMED NUCLEI IN THE OPNM  | 149   |
|           | Introduction                                | 149   |
|           | Giant resonances                            | 150   |
|           | Neutron strength functions                  | 155   |

| Fragmentation of one-quasiparticle states<br>Structure of low-lying nonrotational states | 157<br>159 |
|------------------------------------------------------------------------------------------|------------|
| CONCLUSION                                                                               | 162        |
| ACKNOWLEDGEMENTS                                                                         | . 163      |
| REFERENCES                                                                               | 163        |