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In the decade that has elapsed since neutral currents wei

1. INTRODUCTION -

weak interaction has been studied in a wide variety of phenomena and its properties have
been delineated, in some cases with great accuracy. To a fascinating degree, the structure of
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A brief account of the reviewed topics is given in adv
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1. INTRODUCTION

Very few of the interesting problems in physics are exactly solvable. Lhere are Two
approaches available when one is confronted with this situation. The traditional method is
to simplify the problem, while trying to retain its relevant features, until it turns into a
solvable one. The other is to solve the problem numerically. This second approach is often
considered too brutal, inelegant and devoid of real content. The argument is that mere
numbers do not say anything about dynamics. Whereas this is true of some numerical
studies, in general, because the numerical solution usually requires one to confront every
detail of the process, it yields a very special kind of understanding of the dynamics. This is
analogous to a good experimentalist having a “gut” feeling for which experiments are
possible and which are not.

A major goal of the present article is to help develop this “gut” feeling for numerical
techniques which have recently become popular in high energy physics and which go under
the generic title of “Monte Carlo methods”. Although these methods have been well known
to mathematicians, statistical physicists, engineers and economists, it is only recently, since
the advent of high speed computers, that these techniques have been used in high-energy
physics. The reason for this is that the interesting problems in this field involve a large

*This work is supported by the Department of Energy, under Grant No. DE-AC02-76 ER02220.
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1. INTRODUCTION

In the conventional model of nuclear structure investigations
considered as a system of inert nucleons, which interact by instantaneous two-body forces
and which can be described in the framework of non-relativistic quantum mechanics. For
microscopic nuclear structure calculations within this model one has to solve two problems
which are almost independent from each other. In a first step one has to determine the inter-
action between the nucleons. For really microscopic investigations the nucleon—nucleon
(NN) interaction is determined by an analysis of the two-nucleon data, which are the NN
phase shifts and the data of the deuteron. This can be done, for example, by considering a
purely phenomenological ansatz for the NN potential with a careful adjustment of the
parameter in this ansatz to fit the NN data (see, for example, Refs 1-5). An alternative way
is to consider the meson exchange model for the NN interaction and to describe the NN
force by a One-Boson-Exchange-Potential (OBEP) (see, for example, Refs 6-8). Also in
this model some parameters have to be adjusted to obtain a quantitative fit of the NN phase
shifts. A third possibility to determine the NN interaction has been developed by groups in
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