CONTENTS

Stimulated Mandel'shtam - Brillouin Scattering Lasers V. V. Ragul'skii	
Introduction	
Chapter I Conditions for Obtaining Stationary Lasing with Stimulated Scattering of Light §1. Influence of Intensity, Energy Density, and Exciting-Radiation Pulse Duration on the Laser Operation	
§ 2. Experimental Verification of the Conditions for Stationary Lasing.	
Chapter II Gains and Line Widths for SMBS in Gases	1
Chapter III Single-Frequency SMBS Ring Laser §1. Feasibility of Effective Conversion of Pump Radiation §2. Single-Frequency SMBS Laser	1 1 1
Chapter IV Operation of SMBS Amplifier in the Saturation Regime \$1. Characteristics of SMBS Amplifier in the Stationary Regime \$2. Experimental Investigation of Amplifier Operation in the Saturation Region	2 2
Chapter V Q Switching by SMBS § 1. Lasing Dynamics § 2. Conditions under Which Q Switching Is Possible § 3. Experimental Verification of the Q-Switching Conditions	2 2 2
Chapter VI	
Inversion of the Exciting-Radiation Wave Front in SMBS	3
§1. Comparison of the Wave Fronts of the Exciting and Scattered Light with the Aid of a Phase Plate §2. Influence of the Structure of the Exciting Radiation Field on the Shape of	3
the Scattered-Light Front	3
§3. Compensation for the Phase Distortions in an Amplifying Medium with the Aid of a "Brillouin Mirror"	3
Chapter VII SMBS in the Case of Exciting Radiation with a Broad Spectrum	3
Appendix Experimental Technique \$1. Divergence Measurement Procedure \$2. Cell for Optical Investigations of Compressed Gases	4 4

	Faraday Decoupler Single-Mode Ruby Laser with Pulse Duration 60 nsec	43 43
	Single-Mode Ruby Laser with Pulse Duration 60-200 nsec. Fabry – Perot Etalon with 46-cm Base	45 45
Literature	Cited	46
BASA.	ssed-Gas Lasers Danilychev, O. M. Kerimov, and I. B. Kovsh	
Introductio	\mathbf{n}	49
Chapter I		
	ization Method of Exciting Compressed-Gas Lasers Mechanism of Current Flow through the Active Medium of an	52
	Electroionization Laser	54 50
	Experimental Technique Construction of Laser Chambers	58 58
	Optical Resonators	63
	Measurements of Laser Parameters	65
	Electric Characteristics of Active Medium.	68
	Calculation of the Characteristics of the Discharge Excited by the Electroionization Method	68
3.2.	Experimental Investigation of a Nonautonomous Discharge Initiated in a	70
	Compressed Gas by an Intense Electron Beam – Discussion of Results	7 3
Chapter II		
	ization CO ₂ High-Pressure Laser	84
§ 1.	Kinetics of Population of Working Levels; Gain of Active Medium of	0.0
	Electroionization CO ₂ Laser	86
§ 2.	Threshold Characteristics, Output Energy, Power, and Efficiency of	89
§3.	Laser; Divergence of the Radiation Gain Spectrum of Electroionization CO_2 Laser	97
	Relaxation of Upper Laser Level at High Pressures	104
	Operating Regimes of Electroionization CO ₂ Lasers	109
Chapter III	l sure Gas Lasers Using Other Working Media	112
See Add	Electroionization CO Laser	114
	Laser Operating with Compressed Xenon and Ar:Xe Mixture	118
	Ultraviolet High-Pressure Laser Using the Mixture Ar:N ₂	124
Conclusion		127
4		
Appendix Theory of	Current Flow through an Ionized Gas	128
Literature	Cited	142
Experim	nental Investigation of the Reflection and Absorption	
of H	igh-Power Radiation in a Laser Plasma Krokhin, G. V. Sklizkov, and A. S. Shikanov	
Chapter I	of Laser Radiation from a Plasma (Survey of the Literature)	147
veriection	of paser namenon from a Frasma (survey of the procedure)	

CONTENTS

§1.	Experimental Conditions Realized in Research on Laser-Plasma Parameters	148
§ 2.	Energy Composition of the Reflected Radiation; Anomalous Character of the Interaction of Laser Radiation with a Plasma in a Wide Range of	
	Flux Densities	149
§ 3.	Spectral Composition of Reflected and Scattered Radiation	156
Chapter I		
Investiga	tion of the Absorption of Laser Radiation in Thin Targets	161
§1.	Experimental Setup	161
§2.	Multiframe Schlieren Photography in Ruby-Laser Light; Spatial Resolution	163
§ 3.	Determination of the Time of Bleaching of a Thin Target	164
§4.	Investigation of the Dynamics of Motion of Shock Waves in the Gas	
	Surrounding the Target; Absorbed Energy	167
§ 5.	Discussion of Results	169
Chapter 1	\mathbf{II}	
Reflection	n of Laser Radiation from a Dense Plasma.	170
§1.	Experimental Setup	170
§ 2.	Behavior of the Coefficient of Reflection of Laser Radiation from a Plasma	
	in the Flux-Density Interval 10^{10} - 10^{14} W/cm ²	171
§3.	Dependence of the Reflection Coefficient on the Time; Plasma Probing	
e 4	by Ruby-Laser Radiation	176
§ 4.	Oscillations of Reflected Radiation with Time	178
§ 5.	Directivity of Reflected Radiation	180
Chapter 1		
1921 22	on of Harmonics of the Heating-Radiation Frequency in a Laser Plasma	182
§1.	Investigation of the Generation of the Second Harmonic of the Heating	
	Radiation in a Laser Plasma; Dependence on the Flux Density;	100
§2.	Variation with Time Generation of $^3/_2\omega_0$ Line	$\frac{182}{185}$
84.	Generation of 9/200 time	100
Chapter '		
322 =-3	by of X Rays from a Laser Plasma	186
§ 1.	Procedure of Multichannel Measurement of Continuous X Radiation	186
§ 2. § 3.	Investigation of the Directivity of the X Rays Possibility of Measuring the Electron "Temperature" of a Laser Plasma	187
30.	by the "Absorber" Method	189
		100
Literatur	e Cited	191
Experi	mental Study of Cumulative Phenomena in a Plasma	
Foc	us and in a Laser Plasma	
V. A	. Gribkov, O. N. Krokhin, G. V. Sklizkov, N. V. Filippov,	
and	Γ. I. Filippova	
Introduct	ion	197
- -	e of High-Speed Interferometric Investigation of a Nonstationary	
	se Plasma	198
§ 1.	The Maximum Information Obtained by Optical Laser Research	
	Methods	198
§ 2.	High-Speed Laser Setup for Interferometric Investigations of a Plasma	
	Focus and Cumulative Laser-Plasma Configurations	199

viii

§ 3.	Synchronization Methods	200
§ 4.	Discussion of the Applicability of Laser Interferometry and Interpretation of the Interference Patterns	201
Chapter I		
Investigat	ion of Cumulative Stage of Plasma Focus	204
§1.	Parameters of the "Plasma Focus" Installation.	204
§ 2.	Results of Reduction of the Interference Patterns of the First Contraction	
	of the Plasma Focus	204
§3.	Intermediate Phase	209
§ 4.	Second "Contraction" of Plasma Focus	211
§ 5.	Concluding Stage	213
Chapter I		
Transport Control	n of Results of Experiments with Plasma Focus	214
§ 1.	First "Contraction"	214
§ 2.	Intermediate Phase	218
§3.	Second "Contraction"	221
§ 4.	Neutron Emission from Plasma Focus	223
Chapter I	\mathbf{V}	
~	ions of Cumulative Laser Plasma	224
§1.	Experimental Setup	225
§ 2.	Collision of Two Laser Flares	225
§3.	Quasi-cylindrical Cumulation of Laser Plasma	226
§4.	Investigation of X Rays from a Cumulative Laser	229
§ 5.	Probe Studies of Laser Plasma	230
Chapter V	7	
 3	n of Experimental Results	231
§ 1.	Collision of Flares	231
§2.	Cone Cumulation	231
Conclusio	\mathbf{n}	237
Literatur	o Citod	238
THE STATE		200