CONTENTS

ON THE THEORY OF REACTIONS INVOLVING POLARIZED PARTICLES AND GAMMA QUANTA V. I. Ritus	
Introduction	1
CHAPTER I. General Remarks on the Density Matrix	3
§1. The Density Matrix of a Polarized Particle Beam	3
§2. The Density Matrix of a Polarized Photon Beam	7
§3. The Density Matrix of a System of Two Particles	9
CHAPTER II. Invariance Properties of Interactions	
and Description of a Physical System	13
§1. S Matrix, Scattering Amplitude, and Reaction Cross Section	
in the Case of Polarized Particles	13
§2. Transformations of States and Operators	16
§3. Continuous Transformations (Transformations of the	
Inhomogeneous Lorentz Group)	19
§4. Conservative Operators and Internal Momentum of a System	21
§5. Representation of the Momentum and of the Internal Moment	
in the Case of Systems with Nonvanishing Mass	22
§6. Relativistic Kinematics of the Internal Moment of a System	24
§7. Representation of the Momentum and the Helicity in the Case	
of a System with Vanishing Mass	26
§8. Systems of Interacting Particles and Role of the Center-of-Mass	
Coordinate System	27
§9. Relativistic Description of Polarization Phenomena in the	
Center-of-Mass System	30
§10. Discrete Transformations	31
CHAPTER III. Invariant Spin Structure of the Scattering	5
Amplitude in the Case of Reactions Involving	
Particles with Spin	35
§1. Use of the Conservation Laws in the Center-of-Mass System	35
§2. Determination and Properties of the Angular Operators	36
§3. Spin Structure of the Angular Operators and	
of the S Matrix	38
§4. Independent Spin Operators Which Are Invariant	
with Respect to Rotations and Reflections	40
§5. Invariance of the S Matrix with Respect to Time Reversal.	
Soin Structure of the S Matrix	42

Appendix L. General Form of the S Matrix, Angular Operators, and Coefficients of the Expansion in Terms of Angular Operators for Reactions Involving a System Spin Which Is Not Greater than One	46
CHAPTER IV. Invariant Spin Dependence and Polarization Dependence of the Scattering Amplitude in the Case of	
Reactions Involving Photons §1. Wave Function of the System Photon + Particle in a	48
State with a Definite Moment and Parity §2. Angular Operators for Reactions of the Type	48
$a + \gamma \rightarrow a' + b'$ and $a + \gamma \rightarrow a' + \gamma'$ §3. Independent Invariant Spin Operators for the Reactions	52
 a + γ → a' + b' and a + γ → a' + γ' §4. Invariance of the S Matrix with Respect to Time Reversal and Spin and Polarization Dependence of the S Matrix in Reactions 	53
Involving Photons Appendix II. General Form of the S Matrix, Angular Operators, and	54
Coefficients of the Expansion in Terms of Angular Operators for Reactions $a + \gamma \rightarrow a' + b'$	56
Appendix III. General Form of the S Matrix, Angular Operators, and Coefficients of the Expansion in Terms of Angular Operators for Reactions $a + \gamma \rightarrow a' + \gamma'$	58
CHAPTER V. Spin and Polarization Dependence of the	
Scattering Amplitude in Reactions of the Type $a + b \rightarrow 2\gamma$. Two-Photon Decay of Particles with Spin §1. Wave Function of a Two-Photon System in a State with a Certain	59
Moment and Parity §2. Polarization of a Two-Photon System with a Certain	59
Internal Moment and Parity	63
§3. Two-Photon Decay of Particles with Spin §4. Angular Operators of Reactions of the Type	67
$a + b \rightarrow 2\gamma$	68
Appendix IV. Scattering Matrices, Angular Operators, and Coefficients of the Expansion in Terms of Angular Operators for the	
Reactions $a + b \rightarrow 2\gamma$	69
CHAPTER VI. Structure of the Differential Cross Sections for Reactions Involving Polarized Particles and Photons	71
§1. Description of the Scattering with the Aid of the K Matrix §2. General Form of the Differential Cross Section in the Case	71
of Reactions Involving Polarized Particles §3. Form of the Cross Section in the Case of Interactions Which Are	73
Not Invariant with Respect to Reflections, Time Reversal, or Charge Conjugation	76
§4. General Form of the Differential Cross Section in Reactions in Which Polarized Photons and Particles Participate. Correspondence between the Spin of the Particles and the Circular Polarization of the Photons	79
the Spin of the Particles and the Circular Polarization of the Photons CHAPTER VII. Some Applications of Invariant Spin Operators	1 3
and Invariant Angular Operators	84

CONTENTS	vii

§1. Polarization Effects in the Photoproduction of Mesons at Nucleons. Analysis of the Polarization of High-Energy Photons §2. Invariant Isotope Operators	8 4 8 7
32. Invariant isotope Operators	01
Appendix V. Isotope Operators of Binary Reactions with Isotope Spins	~ ~
of the Particles Less than Unity	88
§3. Separation of Angular Variables, Spin Variables, and Isotope Variables	90
Literature Cited	93
PROPERTIES OF THE ELASTIC SCATTERING AMPLITUDE	95
AT EXTREMELY HIGH ENERGIES Yu. S. Vernov	90
iu. S. Veinov	
Introduction	95
CHADTED I Agreematatic December of	
CHAPTER I. Asymptotic Properties of Analytic Functions	102
§1. Introduction	102
§2. Asymptotic Relation between the Values of an Analytic Function	102
on the Real Axis and in the Complex Plane	103
§3. Relation between the Asymptote of the Absolute Value of an	
Analytic Function and the Asymptote of the Real and	
Imaginary Parts of the Function	108
CHAPTER II. Relation between the Asymptotes of the	
Total Cross Section and the Ratio of the Real and Imaginary Parts of the Scattering Amplitude	113
§1. Improvement of the Froissart Condition	113
§2. Improvement of the Greenberg-Low Condition	114
§3. Improvement of the Lower Limit of $f(E)$	115
§4. Asymptotic Form of the Scattering Amplitude $f(E)$	
when $\xi(E)$ Has a Limit for $E \rightarrow \infty$	117
§5. Limitations for $f(E)$ Which Are Valid for Any Type	
of Oscillation of $f(E)$	118
§6. Inverse Theorems	121
§7. Antisymmetric Amplitude $f_+(E) - f(E)$ and	
Relation between $f_{+}(E)$ and $f_{-}(E)$	123
CHAPTER III. Slowly Varying Factors in the Cross	
Section. Integral Relation between the Phase	
and the Absolute Value of $f(E)$	125
§1. Equation Which Relates the Phase and the Absolute Value	
of the Scattering Amplitude at High Energies	125
§2. New Method of Deriving Limitations for the	
Scattering Amplitude	128
§3. Properties of Slowly Varying Factors in	
the Scattering Amplitude	130
§4. Limits for $\varphi(E)$ Which Can Be Derived without Any	
Assumptions Concerning Possible Oscillations of $f(E)$	133
§5. Inverse Theorems and Relations between Re $\varphi(E)$	
and Im $\varphi(E)$	135

of the Phase and of the Absolute Value of the Scattering Amplitude When the Momentum	
Transferred Is Nonvanishing	136
of the Function A(s, t)	137
§2. Inverse Theorems	142
§3. Behavior of the Scattering Amplitude A(s, t) When	
a Limit of $\xi(s, t)$ Exists	143
§4. Antisymmetric Amplitude $A_{+}(s, t) - A_{-}(s, t)$ and Relation between $A_{+}(s, t)$ and $A_{-}(s, t)$	144
Appendix	
1. Proof of Theorem 2	146
2. Restrictions for $f(E)$ in the Case of Complex E	148
Literature Cited	149
FORMULATION OF THE INTERACTION BETWEEN A	
PARTICLE SYSTEM AND THE ELECTROMAGNETIC FIELD. II	151
Yu. K. Khokhlov	
METHOD OF GREEN FUNCTIONS IN THE THEORY OF NEUTRON	
DIFFUSION IN A HETEROGENEOUS MEDIUM CONTAINING	
SMALL BLOCKS A. V. Stepanov	161
§1. Introduction	161
§2. Derivation of General Formulas	162
§3. Heterogeneous Systems with Periodic Structure	164
§4. Heterogeneous Medium with Randomly Distributed	160
Absorbing Admixtures	168 169
§5. Calculation of the Loss Coefficient §6. Neutron Distribution Function in a Volume	100
Containing a Small Number of Admixtures	172
Literature Cited	173
CALCULATION OF THE RELAXATION CONSTANT OF THE AVERAGE	
NEUTRON FLUX IN AN INHOMOGENEOUS MEDIUM WITH	
ANISOTROPIC SCATTERING	175
A. V. Stepanov and A. V. Shelagin	
300 keV SECTOR CYCLOTRON WITH EXTERNAL INJECTION	181
V. A. Gladyshev	
Introduction	181
CHAPTER L Design of the Sector Cyclotron	185
§1. Magnet	185
§2. Vacuum Chamber	188

CONTENTS

§3. Ion Source and Control of the Beam Along Its	
Path in the Chamber	189
§4. High-Frequency System	191
CHAPTER II. Magnetic Field of the Cyclotron	194
§1. Preliminary Calculations of the Magnetic Field	194
§2. Experimental Adjustment of the Isochronous Field	197
§3. Magnetic Field Measurements	197
§4. Calculation of the Frequencies of the Betatron	
Oscillations with Approximation Formulas	199
§5. Solution of the Equations of Motion with the	
Computer. Properties of the Orbits	203
CHAPTER III. External Ion Injection into the Cyclotron	210
§1. Particle Trajectories Calculated with a Computer	
for the Case of External Injection	211
§2. Experimental Implementation of External Injection	214
Literature Cited	217
FOCUSING OF ION BEAM UNDER DRIFT CONDITIONS	
IN AN INHOMOGENEOUS MAGNETIC FIELD	219
V. A. Gladyshev, L. N. Katsaurov,	
E. M. Moroz, and L. P. Nechaeva	
§1. Ion Trajectories in an Inhomogeneous Magnetic Field	219
§2. Focusing in the Median Plane	222
§3. Vertical Beam Stability during the Drift	
in an Inhomogeneous Field	227
Literature Cited	231
	201
PRODUCTION AND APPLICATION OF SILICON AND	
GERMANIUM SEMICONDUCTOR COUNTERS	233
Yu. V. Anishchenko, I. L. Belkin, A. I. Volkov,	
L. S. Dul'kova, M. M. Zhits, V. P. Zavarzina,	
A. M. Klabukov, N. V. Popov, G. V. Shakhvorostova,	
and I. V. Shtranikh	
§1. Production of Silicon Semiconductor Counters and	
Their Application in Recording Charged	
Particles in Electrostatic Accelerators	233
§2. Production of Germanium Counters	235
§3. Electronic Equipment	238
Literature Cited	245