| CHAPTER I. Methods for the Calculation of Wave Functions | 1 | |---|----| | § 1. Introduction. | 1 | | §2. The Variational Principle | 2 | | § 3. The One-Configuration Approximation | 3 | | §4. Methods of Calculating Radial Functions | 6 | | § 5. More Accurate Methods for the Calculation of the Wave Functions | 9 | | § 6. Calculation of the Oscillator Strengths | 10 | | CHAPTER II. Calculation of Radial Wave Functions with the Help of an Electronic Digital Computer | 13 | | § 7. The Semiempirical Method | 13 | | §8. The Effective Potential. Introduction of Atomic-Core Deformation | 14 | | § 9. Derivation of the Basic Equations | 15 | | §10. Determination of the Parameter ω | 17 | | §11. Boundary Conditions | 18 | | §12. General Scheme of the Solution | 19 | | §13. Comments on Individual Subroutines | 22 | | § 14. Results of the Calculations | 23 | | CHAPTER III. Analytical Radial Functions | 26 | | § 15. Introduction | 26 | | § 16. Radial Functions of Slater and Bates and Damgaard | 26 | | §17. Radial Functions for the Lower States of the Optical Electron | 29 | | CHAPTER IV. Calculation of the Oscillator Strengths | 32 | | § 18. Results of the Calculations and Experimental Data | 32 | | §19. Discussion of the Results. | 32 | | § 20. Summary and Conclusion | 36 | | APPENDIX. Detailed Arrangement of the Numerical Integration of the Differential Equation | 38 | | LITERATURE CITED | 40 | | Bibliographical List of Papers by Workers in the Spectroscopy Laboratory of the P. N. Lebedev Physics | | | Institute of the Academy of Sciences of the USSR, 1932-1960 | 43 | | INTRODUCTION. | 1 | |--|--| | \$ 1. Introduction \$ 2. Collision Theory \$ 3. Broadening by Charged Particles \$ 4. Nonstationary Theory \$ 5. Broadening by Neutral Particles \$ 6. Line Wings | 3
4
5
7
9
11
12 | | Standard CHAPTER II. Investigation of the Width and Shift of Lines in the Plasma of a Spark Discharge 1. Introduction | 16
17
19
21
23 | | CHAPTER III. Investigation of the Width and Shift of Lines in the Plasma of an Arc Discharge § 1. Introduction § 2. Description of Apparatus § 3. Treatment of Spectrograms § 4. Description of the Lines Investigated § 5. Results of Measurements | 28
28
31
33
34
35 | | A. Investigation of Spark Discharge § 1. Evaluation of the Applicability of Collision Theory § 2. Comparison with Stationary Theory § 3. Comparison with Nonstationary Theory Appendix to § 3 § 4. The Case of Two Perturbing Levels § 5. Determination of the Concentration of Charged Particles § 6. Asymmetric Lines | 37
37
38
38
42
43
45 | | B. Investigation of Arc Discharge \$ 1. Evaluation of the Applicability of Collision Theory \$ 2. Roles of Charged and Neutral Particles in Line Broadening \$ 3. Determination of Electron Concentrations and the van der Waals Constant | 49
49
51
51 | | CONCLUSION LITERATURE CITED | 54
56 | | Bibliographical List of Papers by Workers in the Spectroscopy Laboratory of the P. N. Lebedev Physics Institute of the Academy of Sciences of the USSR, 1932-1960 | 5 9 | **5**9 | INTRODUCTION | 1 | |---|----------------------| | CHAPTER I. Elementary Processes of Excitation and Ionization of Atoms in a Spark Discharge § 1. Introduction - Survey of Data in the Literature | 3 | | § 2. Elementary Processes in the Channel of a Spark Discharge
§ 3. Discussion of Results | 5
12 | | CHAPTER II. Methods of Measurement and Experimental Apparatus for Determining the Temperature in a Spark Discharge | 14 | | § 1. Introduction § 2. Description of Apparatus § 3. Methods of Measurement | 14
16
17 | | CHAPTER III. Discussion of the Results of Temperature Measurements § 1. Results of Measurements § 2. Additional Measurements § 3. Discussion of Results | 21
21
21
25 | | CHAPTER IV. On Electrode Processes in a Spark Discharge § 1. Introduction § 2. Investigation of Jet Structure § 3. Investigation of Electrode Processes in a Spark Discharge § 4. Discussion of Results | 29
33
37
40 | | CONCLUSION | 42 | | LITERATURE CITED | 43 | | Bibliographical List of Papers by Workers in the Spectroscopy Laboratory of the P. N. Lebedev Physics Institute of the Academy of Sciences of the USSR, 1932-1960 | 45 | | INTRODUCTION | 1 | |---|----------------------------| | CHAPTER I. Review of Work on Radioluminescence § 1. Emission Spectra § 2. Radioluminescence Yield § 3. The Duration of Scintillations § 4. Variation of the Luminescent Yield with the Energy and Nature of the Particle § 5. The Scintillation Process § 6. The Author's Dissertation | 3
3
4
5
10 | | CHAPTER II. The Photoluminescence Yield of Organic Crystals § 1. Measurement of the Luminescence Quantum Yield in Finely Crystalline Powders § 2. Measurement of the Fluorescence Yield of Monocrystalline Anthracene Plates by the Method of Comparison with the Fluorescence of a Solution | 11
11 | | CHAPTER III. The Luminescence Energy Yield for γ-Scintillations in Stilbene Crystals § 1. γ-Ray Absorption § 2. Experimental Apparatus § 3. Calibration of the Photomultiplier, Amplifier, and Discriminator § 4. Calculation of Yield | 14
15
16
18 | | CHAPTER IV. Comparison of Yields for γ - and Photoexcitation | 20 | | CHAPTER V. Luminescence and the Vavilov-Cerenkov Radiation in Solutions under the Influence of γ-Rays \$ 1. The Solutions Investigated \$ 2. Measurement of the Luminosity from Solutions under the Influence of γ-Rays \$ 3. Measurement of Concentration Quenching \$ 4. Determination of the Wavelength Limits for Absorption by Solutions and Solvents \$ 5. Calculation of Excitation Efficiency | 24
25
26
26
27 | | CHAPTER VI. Quenching of the Luminescence of Organic Substances Excited by α-Particles § 1. Ratio of Luminescence Yields in Excitation by α-Particles and Electrons § 2. Dependence of the α/β Ratio on Temperature § 3. Quenching of the α- and γ-Luminescence of Solutions of Terphenyl in Xylene by Carbon Tetrachloride § 4. Concentration Variation of the α- and β-Luminescence Yields for Solutions of Terphenyl in Xylene | 30
32
35 | | CONCLUSION | 36 | | SUMMARY | 39 | | LITERATURE CITED | 40 | | Bibliographical List of Papers by Workers in the Spectroscopy Laboratory of the P. N. Lebedev Physics Institute of the Academy of Sciences of the USSR, 1932-1960 | 43 |