CONTENTS

	Preface	oage	ix
1	Introduction and historical background		1
2	Magnetokinematic preliminaries		13
2.1	Structural properties of the B -field		13
2.2	Magnetic field representations		17
2.3	Relations between electric current and magnetic field		23
2.4	Force-free fields		26
2.5	Lagrangian variables and magnetic field evolution		31
2.6	Kinematically possible velocity fields		35
2.7	Free decay modes		36
3	Convection, distortion and diffusion of magnetic field		43
3.1	Alfvén's theorem and related results		43
3.2	The analogy with vorticity		46
3.3	The analogy with scalar transport		48
3.4	Maintenance of a flux rope by uniform rate of strain		49
3.5	An example of accelerated ohmic diffusion		50
3.6	Equation for vector potential and flux-function unde	r	
	particular symmetries		51
3.7	Field distortion by differential rotation		53
3.8	Effect of plane differential rotation on an initially uniform	n	
	field		54
3.9	Flux expulsion for general flows with closed streamlines		62
3.10	Expulsion of poloidal fields by meridional circulation		64
3.11	Generation of toroidal field by differential rotation		65
3.12	2 Topological pumping of magnetic flux		70
4	The magnetic field of the Earth		76
4.1	Planetary magnetic fields in general		76

4.2 Spherical harmonic analysis of the Earth's field 79

CONTENTS

vi

4.3	Variation of the dipole field over long time-scales	83
4.4	Parameters and physical state of the lower mantle and core	85
4.5	The need for a dynamo theory for the Earth	89
4.6	The core-mantle interface	89
4.7	Precession of the Earth's angular velocity vector	91
5	The solar magnetic field	94
5.1	Introduction	94
5.2	Observed velocity fields	95
5.3	Sunspots and the solar cycle	96
5.4	The general poloidal magnetic field of the Sun	101
5.5	Magnetic stars	105
6	Laminar dynamo theory	108
6.1	Formal statement of the kinematic dynamo problem	108
6.2	Rate of strain criterion	109
6.3	Rate of change of dipole moment	111
6.4	The impossibility of axisymmetric dynamo action	113
6.5	Cowling's neutral point argument	115
6.6	Some comments on the situation $\mathbf{B} \cdot \nabla \wedge \mathbf{B} \equiv 0$	117
6.7	The impossibility of dynamo action with purely toroidal	
	motion	118
6.8	The impossibility of dynamo action with plane two-	
	dimensional motion	121
6.9	Rotor dynamos	122
6.10	Dynamo action associated with a pair of ring vortices	131
6.11	The Bullard–Gellman formalism	137
6.12	The stasis dynamo of Backus (1958)	142
7	The mean electromotive force generated by random motions	145
7.1	Turbulence and random waves	145
7.2	The linear relation between \mathscr{E} and \mathbf{B}_0	149
7.3	The α -effect	150
7.4	Effects associated with the coefficients β_{ijk}	154
7.5	First-order smoothing	156
7.6	Spectrum tensor of a stationary random vector field	157
7.7	Determination of α_{ij} for a helical wave motion	162
7.8	Determination of α_{ij} for a random u -field under first-order	
	smoothing	165

CONTENTS

7.9	Determination of β_{ijk} under first-order smoothing	169
7.10	Lagrangian approach to the weak diffusion limit	170
7.11	Effect of helicity fluctuations on effective turbulent diffusivity	175
8	Braginskii's theory for weakly asymmetric systems	179
8.1	Introduction	179
8.2	Lagrangian transformation of the induction equation when	
	$\lambda = 0$	182
8.3	Effective variables in a Cartesian geometry	185
8.4	Lagrangian transformation including weak diffusion effects	187
8.5	Dynamo equations for nearly rectilinear flow	188
8.6	Corresponding results for nearly axisymmetric flows	190
8.7	A limitation of the pseudo-Lagrangian approach	192
8.8	Matching conditions and the external field	194
9	Structure and solution of the dynamo equations	197
9.1	Dynamo models of α^2 and $\alpha\omega$ -type	197
9.2	Free modes of the α^2 -dynamo	199
9.3	Free modes when α_{ij} is anisotropic	202
9.4	The α^2 -dynamo in a spherical geometry	205
9.5	The α^2 -dynamo with antisymmetric α	209
9.6	Free modes of the $\alpha\omega$ -dynamo	212
9.7	Concentrated generation and shear	216
9.8	Symmetric $U(z)$ and antisymmetric $\alpha(z)$	219
9.9	A model of the galactic dynamo	221
9.10	Generation of poloidal fields by the α -effect	230
9.11	The $\alpha\omega$ -dynamo with periods of stasis	233
9.12	Numerical investigations of $\alpha \omega$ -dynamos	234
10	Waves of helical structure influenced by Coriolis, Lorentz	
	and buoyancy forces	244
10.1	The momentum equation and some elementary conse-	
	quences	244
10.2	Waves influenced by Coriolis and Lorentz forces	248
10.3	Modification of α -effect by Lorentz forces	252
10.4	Dynamic equilibration due to reduction of α -effect	257
10.5	Helicity generation due to interaction of buoyancy and	
	Coriolis forces	262
10.6	Excitation of magnetostrophic waves by unstable strati-	
	fication	264

vii

viii Contents

10.7	Instability due to magnetic buoyancy	270
10.8	Helicity generation due to flow over a bumpy surface	276
11	Turbulence with helicity and associated dynamo action	280
11.1	Effects of helicity on homogeneous turbulence	280
11.2	Influence of magnetic helicity conservation in energy transfer	
	processes	288
11.3	Modification of inertial range due to large-scale magnetic	
	field	294
11.4	Non-helical turbulent dynamo action	295
12	Dynamically consistent dynamos	298
12 12.1	Dynamically consistent dynamos The Taylor constraint and torsional oscillations	298 298
12 12.1 12.2	Dynamically consistent dynamos The Taylor constraint and torsional oscillations Dynamo action incorporating mean flow effects	298 298 303
12 12.1 12.2 12.3	Dynamically consistent dynamos The Taylor constraint and torsional oscillations Dynamo action incorporating mean flow effects Dynamos driven by buoyancy forces	298 298 303 307
12 12.1 12.2 12.3 12.4	Dynamically consistent dynamos The Taylor constraint and torsional oscillations Dynamo action incorporating mean flow effects Dynamos driven by buoyancy forces Reversals of the Earth's field, as modelled by coupled disc	298 298 303 307
12 12.1 12.2 12.3 12.4	Dynamically consistent dynamos The Taylor constraint and torsional oscillations Dynamo action incorporating mean flow effects Dynamos driven by buoyancy forces Reversals of the Earth's field, as modelled by coupled disc dynamos	298 298 303 307 318
12 12.1 12.2 12.3 12.4	Dynamically consistent dynamos The Taylor constraint and torsional oscillations Dynamo action incorporating mean flow effects Dynamos driven by buoyancy forces Reversals of the Earth's field, as modelled by coupled disc dynamos <i>References</i>	298 298 303 307 318 325