CONTENTS

PREFACE

1	MOT	TION OF A CHARGED PARTICLE IN ELECTROMAGNETIC FIELDS		
	1.1 1.2 1.3 1.4 1.5 1.6	Introduction 2 Applications of Plasma Physics 14 Review of Vector Analysis and Electromagnetic Theory 30 Motion of a Charge in Uniform Fields 36 Motion in a Nonuniform B Field 43 Adiabatic Invariants; Applications; Time-varying Fields 52		
» 2	MAG 2.1 2.2 2.3	The Langevin Equation 62 Electron Conductivity and Mobility 65 Conductivity Tensor and Dielectric Tensor 69		
	$2.4 \\ 2.5 \\ 2.6$	Wave Propagation with $B_0 = 0$ 72 The Effect of Collisions 82 Resonances and Reflection Points with $\mathbf{B}_0 \neq 0$ 86		
	2.7 2.8	Wave Propagation Parallel or Perpendicular to \mathbf{B}_0 92 Alternative Descriptions of Dispersion Relations 98		

	3.1	Derivation of Continuum Equations 104
	3.2	Treatment of Plasma as a Mixture 109
	3.3	Diffusion 113
	-3.4	Wave Propagation in a Warm Plasma 122
	3.5	Longitudinal Waves in a Fully Ionized Gas '129
	3.6	Transverse Waves in the Direction of B ₀ 134
	3.7	Linearized Magnetohydrodynamic Equations 138
	3.8	Magnetic Pressure, Viscosity, Reynolds Number, and Diffusivity 145
	3.9	MHD Waves 150
		The Nonlinear MHD Equations 155
		,
4	THE	BOLTZMANN-VLASOV EQUATION FOR A PLASMA 159
	4.1	Distribution Function and the Boltzmann Equation 160
	4.2	Transport Equations 166
	4.3	The BV Equation and the Relaxation Model 172
	4.4	Application to Longitudinal Electron Waves 177
	4.5	Landau Damping 181
	4.6	Landau Damping of Transverse Waves 188
	4.7	The Two-stream Instability 198
	4.8	The Debye Potential Problem 203
	4.9	Plasma Sheaths 210
5	THE	BOLTZMANN EQUATION FOR A PLASMA 223
	5.1	Two-body Collisions and the Boltzmann Collision Term 224
	5.2	The H Theorem 230
	5.3	Maximum Entropy and the Maxwellian Distribution Function 235
	5.4	Lowest-order Transport Equations for a Gas Mixture 240
	5.5	Calculation of Collision Frequencies 246
	5.6	The Electron Runaway Effect 254
	5.7	The Thirteen-moment Equations for an Electron Gas 260
	5.8	Calculation of Transport Coefficients 267
	5.9	Distribution Function for a Strong E Field 273
	5.10	The Fokker-Planck Equation 282
6	THE	BBGKY EQUATIONS FOR A PLASMA 291
	6.1	The Liouville Equation 292
	6.2	The Equation for $f^{(1)}$ 295
	6.2	The BV Equation with Self-consistent Field 299
	6.4	Corrections to the BV Equation 303
	6.5	Formal Perturbation Technique for Weak Correlations 309
	0.0	rothia rotationation rothinguotor wone Corrotations 500

3 CONTINUUM EQUATIONS FOR A PLASMA 103

MATHEMATICAL APPENDIX 315

A.1	Delta Function and Fourier Transform Theory	316
A.2	Evaluation of Scattering Angle χ 321	
A.3	Derivation of Boltzmann Collision Term 326	
A.4	Calculation of Cross Sections 330	•
A 5	The Channan English Technique 225	

340

A.5 The Chapman-Enskog Technique 335 A.6 Evaluation of $(\partial f/\partial t)_c$ for Electron-Neutral Collisions

A.7 Important Formulas and Definitions 347

BIBLIOGRAPHY 351

INDEX 355