目 次

1章 ラプラス変換 要 項 ラプラス変換の定義 1 ラプラス逆変換の定義 1 基本的公式と定理 2 ヘビサイドの部分分数展開定理 2 デュアメルの積分 問題 1.1~1.19 ……………………3~21 2章 制御系および要素の伝達関数 要 項 自動制御系 22 伝達関数 23 各種要素の伝達関数 23 ブロック線図 24 一巡伝達関数と閉回路伝達関数 25 問 時間応答 3 章 項 時間応答の求め方 48 フィードバック制御系の時間応答と代表根 48 過渡応答特性 49 定常特性 49 問 題 3.1~3.11 ……………… 51~66 4章 周波数応答 要 項 周波数伝達関数 67 ベクトル軌跡 67 ボード線図 68

ボード線図の折線近似

ボード線図の合成

69

70

		ゲイン・位相図	72
		閉回路の周波数応答	72
		<i>M</i> -α 軌跡	73
		ニコルズ線図	74
問	題	4. 1~4. 16	·· 75~96
		5 章 安定判別	
要	項	安定性の定義	97
X	-7 4	フルヴィッツの安定判別法	97
		ラウスの安定判別法	98
		ナイキストの安定判別法	100
		安定度	101
		ボード線図による安定判別	103
問	噩	5. 1~5. 14 ···································	103~121
FJ	思	J. 1~J. 14	100 121
		6章 根軌跡法	
要	項	根軌跡の定義	122
		根軌跡の求め方	122
		根軌跡の性質	123
問	題	6. 1~6. 17 ·····	125~145
		7 章 制御系の性能評価と設計	
		•	146
要	項	制御系の特性	146 146
		定常特性	
		速応性と減衰特性	146 147
	_	制御系(サーボ機構)の計画	
問	題	7. 1~7. 19	148~184
		8章 サンプル値制御系	
要	項	サンプラとホールド回路	185
		Z変換の定義	186
		ラプラス変換から Z変換を求める方法	186
		逆変換の定義と求め方	186
		基本的な公式と定理	187
		パルス伝達関数	187

		サンプル個制御糸の心谷	198
		定常偏差	189
		安定判別	189
		根軌跡法	191
		サンプル値制御系の設計	191
		拡張 Z 変換	192
		拡張パルス伝達関数	192
		逆拡張 <i>Z</i> 変換	192
問	題	8. 1~8. 24	192~225
		9 章 統計的制御理論	
要们	項	確率変数 $x(t)$ の時間平均の定義	226
	-34	不規則過程 $x(t)$ の集合平均の定義	226
		エルゴード性の定義	226
		確率分布関数 $F(x)$ の定義	226
		ガウス分布(正規分布)の定義	226
		自己相関関数 $\phi_{xx}(\tau)$ の定義	226
		相互相関関数 $\phi_{xy}(\tau)$ の定義	226
		パワー密度スペクトル Φ _x (ω) の定義	226
		自己相関関数とパワー密度スペクトルの関係	226
		相互密度スペクトルの定義	227
		相互相関関数と相互密度スペクトルの関係	227
		要素 G の入力 $x(t)$ の密度スペクトルと出力 $y(t)$ の自乗平均の関係	227
		密度スペクトルと $G(j\omega)$ の関係	227
問	題	9. 1~9. 22	227~246
		10 章 状態方程式	
_		10 1 10 10 10 10 10 10 10 10 10 10 10 10	0.45
要	項	ベクトルと行列	247
		行列式	248
		行列の演算	249
		ベクトルの1次独立性と行列の階数	249
		固有值	250
		ジョルダンの標準形	250
		2次形式	251
		ベクトルと行列の微分と積分	252

		目 次	vii
		状態方程式	252
		状態方程式と伝達関数の関係	253
		伝達関数から状態方程式モデルを求める方法	253
		遷移行列と状態方程式の解	256
		可制御性と可観測性	257
		安定性	258
		離散時間システムの状態方程式	258
問	顯	10.1~10.26	259~283
[-]	~		
		11 章 最適制御理論	
要	項	最適制御問題	284
		ポントリャーギンの最大原理	284
		動的計画法	285
問	題	11.1~11.12	286~305
		12章 非線形制御系	
要	項	記述関数の定義	306
		記述関数の求め方	306
		ゼロメモリー型非線形要素の定義	306
		非線形系の安定に関するポポフの定理	307
		非線形系の安定に関する円板定理	307
		位相解析の定義	308
		等傾斜線法	308
		リエナールの方法	308
		リアプノフ関数の定義	309
		安定判別に関するリアプノフの定理(リアプノフの第2法あるいは直	接法)309
問	題	12. 1~12. 17	309~341
		索 引	343