Contents

PART A.	FUNDAMENTALS AND MATHEMATICAL
	TECHNIQUES

1.	S. W. Lee	1-3
2.	Theorems and Formulas S. W. Lee	2-1
3.	Techniques for Low-Frequency Problems A. J. Poggio and E. K. Miller	3-1
4.	Techniques for High-Frequency Problems P. H. Pathak	4-1
P/	ART B. ANTENNA THEORY	
5.	Radiation From Apertures E. V. Jull	5-3
6.	Receiving Antennas P. K. Park and C. T. Tai	6-1
7.	Wire and Loop Antennas L. W. Rispin and D. C. Chang	7-1
8.	Horn Antennas Constantine A. Balanis	8-1
9.	Frequency-Independent Antennas Paul E. Mayes	9-1
10.	Microstrip Antennas William F. Richards	10-1
11.	Array Theory Y. T. Lo	11-1
12.	The Design of Waveguide-Fed Slot Arrays Robert S. Elliott	12-1
	Periodic Arrays R. J. Mailloux	13-1
	Aperiodic Arrays Y. T. Lo	14-1

15.	Reflector Antennas Y. Rahmat-Samii	15-1
16.	Lens Antennas J. J. Lee	16-1
PA	ART C. APPLICATIONS	
17.	Millimeter-Wave Antennas F. Schwering and A. A. Oliner	17-3
18.	Practical Aspects of Phased Array Design Raymond Tang	18-1
19.	Beam-Forming Feeds J. S. Ajioka and J. L. McFarland	19-1
20.	Antennas on Aircraft, Ships, or Any Large, Complex Environment W. D. Burnside and R. J. Marhefka	20-1
21.	Satellite Antennas C. C. Han and Y. Hwang	21-1
22.	Remote Sensing and Microwave Radiometry J. C. Shiue and L. R. Dod	22-1
23.	Antennas for Geophysical Applications D. A. Hill	23-1
24.	Antennas for Medical Applications C. H. Durney and M. F. Iskander	24-1
25.	Direction-Finding Antennas R. E. Franks	25-1
26.	Standard AM Antennas C. E. Smith	26-1
27.	TV and FM Broadcast Antennas G. W. Collins	27-1
P/	ART D. RELATED TOPICS	
28.	Transmission Lines and Waveguides Y. C. Shih and T. Itoh	28-3
29.	Propagation C. H. Liu and D. J. Fang	29-1
30.	Antenna Response to Electromagnetic Pulses K. S. H. Lee	30-1
31.	Radome Electromagnetic Design G. P. Tricoles	31-1
32.	Measurement of Antenna Radiation Characteristics on Far-Field Ranges E. S. Gillespie	32-1
33.	Near-Field Far-Field Antenna Measurements Jørgen Appel-Hansen	33-1

Appendixes

A.	Physical Constants, International Units, Conversion of Units, and Metric Prefixes	A-3
В.	The Frequency Spectrum	B-1
C.	Electromagnetic Properties of Materials	C-1
D.	Vector Analysis	D-1
E.	VSWR Versus Reflection Coefficient and Mismatch Loss	E-1
F.	Decibels Versus Voltage and Power Ratios	F-1
Ind	lex	I-1

Basics

S. W. Lee

University of Illinois

1. The Maxwell Equations and Time-Harmonic Fields	1-5
2. The Poynting Theorem	1-7
3. Boundary, Radiation, and Edge Conditions	1-8
4. Radiation from Sources	1-11
5. Plane Waves and Polarization	1-13
6. Antenna Near and Far Fields	1-16
7. Far-Field Representation	1-18
8. Calculation of the Far Field	1-21
From Given Currents 1-21	
From Given Fields over a Closed Surface 1-22	
9. Reference and Cross Polarizations	1-23
10. Antenna Gains	1-24
Incident Powers on an Antenna 1-24	
Three Gains in State (k, U) 1-25	
Three Gains in State (k, u) 1-25	
Peak Gains 1-26	
Gain-Related Terms 1-27	
11. Pattern Approximation by $(\cos \theta)^q$	1-28
12. TE and TM Field Representations	1-30
13. Plane-Wave Spectrum Representation	1-31
14. Periodic Structure	1-33
15. Rectangular Waveguide	1-37
16. Circular Waveguide	1-44
17. References	1-50

Theorems and Formulas

S. W. Lee

University of Illinois

1.	Duality		2-5
2.	Green's Function in an Unbounded Space		2-6
	Scalar Wave Equation 2-6		
	Vector Wave Equation 2-7		
	The Electric Field 2-8		
	Integration Involving the R^{-3} Singularity 2-9		
	Explicit Expressions for C _{mn} 2-11		
3.	Image Theory		2-11
4.	The Babinet Principle		2-13
	Scattering Problems 2-13		
	An Impedance Problem 2-15		
5.	Reciprocity		2-16
	Bra-Ket Notation 2-16		
	The Lorentz Relation 2-16		
	The Reciprocity Theorem 2-18		
6.	Huygens' Principle		2-18
7.	The Kirchhoff Approximation		2-19
8.	Scattering by an Obstacle		2-21
	Bistatic Cross Section 2-22		
	Radar Cross Section 2-23		
	Reciprocity 2-24		
	Scattering Cross Section 2-24		
	Physical Optics Approximation for Scattering by a Conductor	2-25	
	Two Other Versions of the Physical Optics Approximation	2-26	
9.	The Antenna as a One-Port Device		2-27
0.	Three Ideal Sources for Transmitting Antennas		2-29
11.	Three Ideal Meters for Receiving Antennas		2-30

12.	Reciprocity between Antenna Transmitting and Receiving	2-32
	Reciprocity Involving General Incident Fields 2-32	
	Reciprocity Involving Plane Waves 2-33	
	Antenna Effective Length 2-34	
	Transmitting Field in Terms of Effective Length 2-34	
	Receiving Cross Section 2-35	
13.	The Radar Equation and Friis Transmission Formula	2-36
14.	Noise Temperature of an Antenna	2-39
	Antenna Noise Temperature 2-39	
	Brightness Temperature of an Emitter 2-40	
	Calculation of Antenna Noise Temperature 2-41	
	Noise Power at the Receiver's Terminal 2-42	
15.	References	2-43

Techniques for Low-Frequency Problems

A. J. Poggio

Lawrence Livermore National Laboratory

E. K. Miller

Rockwell International Science Center

Introduction to Low-Frequency Techniques	3-5
Part 1. Selected Analytical Issues for Antenna Engineering	
1. Theory	3-5
•	3-6
The Electromagnetic Field Equations for Antenna Analysis 3-6	
Integral Representations for Far Fields 3-8	
Duality 3-9	
Radiated Power 3-11	
Directive Gain, Directivity, Efficiency, and Gain 3-12	
2. Characteristics of Some Classical Antennas	3-13
The Electric Dipole Antenna 3-13	3-13
The Sinusoidal Current Distribution 3-14	
The Traveling-Wave Antenna 3-16	
The Small Loop Antenna 3-16	
The Perfect Ground Plane 3-18	
The Rectangular-Aperture Antenna 3-21	
The Biconical Antenna 3-24	
An Antenna Reference Chart 3-26	
Imperfect Grounds 3-27	
Arrays 3-33	
3. Integral Equations in Antenna Analysis	3-36
Perfectly Conducting Wires and Bodies 3-36	3 30

Thin-Wire Integral Equations 3-44	
Integral Equations for Solid Bodies 3-46	
The Imperfectly Conducting Ground 3-47	
Integral Equations in the Time Domain 3-50	
Part 2. Numerical Issues Involved in Integral Equations for	
Antenna Analysis	3-52
1. Introduction	3-52
2. Preliminary Discussion	3-52
3. Numerical Implementation	3-55
The General Idea 3-55	
Frequency-Domain Method of Moments 3-57	
Time-Domain Method of Moments 3-62	
The N-Port Analogy 3-64	
Comparison of Frequency- and Time-Domain Approaches 3-65	
Benefits of Symmetry 3-65	
4. Computation	3-68
Modeling Errors 3-69	
Limitations 3-69	
5. Validation	3-72
Experimental Validation 3-72	
Analytical Validation 3-76	
Numerical Validation 3-76	
6. A Guided Tour of Some Codes and Their Features	3-80
The General Versus the Specific 3-81	
Generic Characteristics 3-81	
The Importance of the Details 3-86	
A Code Catalog 3-87	
A Closer Examination of Two Specific Codes 3-87	
Application Guidelines 3-87	
7. References	3-96

Techniques for High-Frequency Problems

P. H. Pathak

Ohio State University ElectroScience Laboratory

1.	Introduction		4-3
2.	Wavefronts, Rays, and the Geometrical Optics Field		4-6
	The Ray Concept 4-6		
	The Geometrical Optics Field 4-8		
3.	The Physical Optics Field		4-18
	Three-Dimensional Case 4-19		
	Two-Dimensional Case 4-20		
4.	The Geometrical Theory of Diffraction and Its Uniform		
	Versions		4-23
	General Form of the GTD Diffracted-Ray Fields E_k^d and H_k^d	4-23	
	Uniform Version of the GTD 4-31		
5.	The Equivalent Current Method		4-96
	ECM for Edge-Diffracted Ray Caustic Field Analysis	4-97	
6.	The Physical Theory of Diffraction and Its Modifications		4-102
	PTD for Edged Bodies 4-104		
7.	References		4-115

Radiation from Apertures

E. V. Juli

University of British Columbia

1.	Alternative Formulations for Radiation Fields	5-5
	Plane-Wave Spectra 5-5	
	Equivalent Currents 5-8	
2.	Radiation Patterns of Planar Aperture Distributions	5-10
	Approximations 5-10	
	Rectangular Apertures 5-11	
	Circular Apertures 5-20	
	Near-Field Patterns 5-24	
3.	Aperture Gain	5-26
4.	Effective Area and Aperture Efficiency	5-27
5.	Near-Field Axial Gain and Power Density	5-29
6.	References	5-34

Receiving Antennas

P. K. Park

Hughes Aircraft Company

C. T. Tai

University of Michigan

1.	Equivalent Circuit of a Receiving Antenna	6-3
2.	Vector Effective Height of an Antenna	6-3
3.	Receiving Cross Section, Impedance-Matching Factor,	
	and Polarization-Matching Factor	6-6
4.	Generalized Friis Transmission Formula	6-8
5.	Mutual Impedance between Distant Antennas	6-9
6.	Small Antennas	6-9
	The Short Dipole 6-10	
	The Small Loop 6-13	
7.	Ferrite Loop Antennas	6-18
8.	Bandwidth and Efficiency	6-22
9.	Noise	6-24
10.	Satellite TV Earth Station Receiving Antenna	6-25
11.	References	6-32

Wire and Loop Antennas

L. W. Rispin

MIT Lincoln Laboratory

D. C. Chang

University of Colorado

1. Introduction		7-5
The Thin-Wire Antenna 7-5		
Input Admittance or Impedance 7-7		
Far-Field Radiation from a Thin-Wire Transmitting Antenna	7-8	
The Receiving Antenna 7-8		
Loaded Thin-Wire Antennas 7-9		
Transient Response 7-10		
Equivalent Radius for Noncircular Cylindrical Thin-Wire		
Conductors 7-10		
Solid Thin-Wire Antenna Conductors 7-10		
Antenna Parameters 7-11		
2. The Linear Dipole Antenna		7-11
Unloaded Transmitting Antennas 7-12		,
Input Admittance or Impedance 7-14		
Far-Field Radiation from a Linear Thin-Wire Transmitting		
Antenna 7-15		
Unloaded Receiving Antennas 7-18		
Impedance-Loaded Antennas 7-19		
An Impedance-Loaded Monopole Antenna 7-20		
Transient Behavior of a Dipole Antenna 7-21		
3. The Sleeve Antenna		7-23
The Junction Effect 7-23		1-23
The Sleeve Dipole Antenna 7-26		
The Sleeve Monopole Antenna 7-29		
The Sieere Monopole America 1-23		

	The Coaxial Sleeve Antenna with a Decoupling Choke 7-31	
4.	The Folded Dipole Antenna	7-37
5.	The Thin-Wire Loop Antenna	7-42
	Far-Field Radiation from a Circular Loop Antenna 7-44	
	The Electrically Small Receiving Loop Antenna 7-46	
	Loaded Loop Antennas 7-47	
6.	Concluding Remarks	7-48
7.	References	7-49

Horn Antennas

Constantine A. Balanis

Arizona State University

8-3
8-5
0.5
8-20
0-20
8-34
0.51
8-43
8-46
0.10
8-50
0.00
8-73
5 , 6
8-85

Frequency-Independent Antennas

Paul E. Mayes

University of Illinois

1.	Basic Types		9-3
2.	Log-Periodic Dipole Arrays		9-12
	Design of Log-Periodic Dipole Arrays 9-20		
3.	Periodic Structure Theory		9-32
	Design of Log-Periodic Zigzag Antennas 9-37		
	Periodically Loaded Lines 9-46		
	Log-Periodic Designs Based on Periodic Structure Theory	9-62	
4.	Log-Spiral Antennas		9-72
	Conical Log-Spirals 9-79		
	Construction Techniques 9-111		
5.	References		9-112
6.	Bibliography		9-114

Microstrip Antennas

William F. Richards

University of Houston

	Introduction Physical Models	10-5 10-7
۷.	Physical Models Transmission-Line Model 10-7	10 /
	2,000	
2	Cavity Model 10-10	10-21
3.	Pattern Control Proposition 10.22	10-21
	General Properties 10-23	
	The (0, 1) Mode 10-24	
	The (0, 2) Mode 10-25	
	The DC Mode 10-25	
	The (1, 1) Mode of a Circular-Disk Element 10-25	
	The (0, n) Circular-Disk Modes 10-25	
	Other Modes 10-25	
4.	Impedance and Circuit Models	10-26
	General Circuit Model 10-26	
	Simplified Circuit Model 10-28	
	Circuit Model for Near-Degenerate Modes 10-28	
	Simple Feed Models 10-28	
	Resonant Impedance 10-28	
	Feed Reactance 10-31	
	Multiport Impedance Parameters 10-34	
	Efficient Computation of Impedance Parameters 10-34	
5.	Resonant Frequency	10-44
	Rectangular Patch 10-46	
	Circular-Disk Patch 10-47	
	Circular-Sector Patch 10-47	
	Annular Patch 10-47	
	Annular-Sector Patch 10-47	
6	Efficiency	10-49
	Matching	10-50
٠.	171400	10-

8.	Loaded Microstrip Elements	10-52
9.	Applications	10-56
	Circular Polarization 10-57	
	Dual-Band Elements 10-63	
	Frequency-Agile Elements 10-66	
	Polarization-Agile Elements 10-69	
10.	References	10-70

Array Theory

Y. T. Lo

University of Illinois

1.	Introduction	11-5
2.	General Formulation	11-5
3.	Linear Arrays	11-8
	Arrays with Prescribed Nulls 11-9	
	Binomial Arrays 11-10	
	Uniform Arrays 11-11	
	Dolph-Chebyshev Arrays 11-13	
4.	Linear Transformations in Antenna Arrays	11-23
	Linear Transformations in Array Geometry 11-23	
	Application to Planar Periodic Arrays 11-26	
	Nonuniform Excitation and Relation between Aperture Antenna	
	and Discrete Array 11-29	
	Hexagonal Arrays 11-30	
	Periodic Arrays with Minimum Number of Elements 11-31	
	Transformation between Circular and Elliptical Arrays 11-33	
	Beam and Pattern Distortion Due to Scanning 11-36	
	Linear Transformations on Excitations 11-39	
	Circular Arrays 11-41	
	Cophasal Uniform Circular Arrays 11-46	
	Nonuniformly Excited Circular Arrays 11-47	
	Elliptical Arrays with Nonuniform Excitations 11-48	
5.	Planar Arrays	11-48
	Two-Dimensional Dolph-Chebyshev Arrays 11-49	
	A Few Major Results 11-52	
	General Discussion of the Transformation 11-57	
6.	Optimization of Directivity (D) and Signal-to-Noise Ratio (SNR)	11-58
	Formulation and Solution 11-58	
	Planar Array with Isotropic Elements or Vertical Dipoles in the	
	(x, y) <i>Plane</i> 11-63	

	A Typical Example for Maximum Directivity	11-65	
	An Example for Maximum SNR 11-70		
	Extensions 11-74		
7.	Pattern Synthesis in the Probabilistic Sense		11-76
8.	References		11-86

The Design of Waveguide-Fed Slot Arrays

Robert S. Elliott

University of California at Los Angeles

1.	Introduction	12-3
2.	The E-Field Distribution in a Longitudinal Slot	12-6
3.	The Three Design Equations for Arrays of Longitudinal Slots	12-10
4.	The Design of a Linear Array of Resonantly Spaced Longitudinal	
	Slots (Standing-Wave Feed)	12-13
5.	The Design of a Linear Array of Nonreasonantly Spaced	
	Longitudinal Slots (Traveling-Wave Feed)	12-16
	Case 1. All Slots on the Same Side of the Center Line 12-17	12 10
	Case 2. Slots Alternately Displaced, $\beta_{10}d < \pi$ 12-18	
	Case 3. Slots Alternately Displaced, $\beta_{10}d > \pi$ 12-18	
6.	The Design of a Planar Array of Longitudinal Slots	12-20
	The Achieved Aperture Distribution of Arrays of Longitudinal Slots	12-24
	The Design of Arrays of Centered-Inclined Broad Wall Slots	12-24
	The Design of Arrays of Inclined Narrow Wall Slots	12-25
	Difficulties in the Design of Large Arrays	12-28
	Second-Order Effects	12-26
	Infinite Ground Plane 12-34	12-34
	Wall Thickness 12-35	
	E-Field Distribution in the Slot Aperture 12-35	
	Internal Higher-Order-Mode Mutual Coupling between	
	Radiating Slots 12-35 History Order Mode Counting in Juneticus 12-36	
12	Higher-Order-Mode Coupling in Junctions 12-36	10.00
	Far-Field and Near-Field Diagnostics as Design Tools	12-36
13.	References	12-37

Periodic Arrays

R. J. Mailloux

Rome Air Development Center, Electromagnetic Sciences Division

1.	Introduction	13-5
	Pattern and Excitation 13-5	
	Time Delay and Phase Steering 13-7	
	Examples of Array Collimation 13-8	
	Quality of the Array Beam 13-10	
2.	Patterns of Periodic Arrays	13-12
	Characteristics of an Array Scanned in One Plane 13-12	
	Scanning in Two Planes 13-15	
	Pattern Shape and Beam Broadening 13-17	
	Phased Array Bandwidth 13-19	
	Antenna Pattern Synthesis 13-20	
	General Procedures 13-21	
	Synthesis With Orthogonal Beams 13-22	
	Low Side Lobe Solutions: Basic Formulas and Engineering Data	13-23
	Dolph-Chebyshev Synthesis 13-24	
	Taylor Line Source Synthesis 13-25	
	Bayliss Line Source Synthesis 13-27	
3.	Array Organization: Subarrays and Broadband Feeds	13-30
	Aperture Illumination Control at Subarray Input Ports 13-30	
	Wideband Characteristics of Time-Delayed Subarrays 13-32	
	Contiguous Subarrays of Discrete Time-Delay Devices 13-32	
	Overlapped Subarrays 13-35	
	Broadband Array Feeds with Time-Delayed Offset Beams 13-39	
4.	Practical Arrays	13-41
	Mutual Coupling and Element Patterns 13-41	
	Array Blindness 13-45	
	Conformal Arrays 13-49	
	Array Errors and Phase Quantization 13-52	

Array Elements	13-57	
Passive Components j	for Arrays: Polarizers and Power Dividers	13-60
Array Phase Control	13-62	
5. References		13-64

Aperiodic Arrays

Y. T. Lo

University of Illinois

1	Introduction	14-3
2.	A Brief Review	14-4
3.	Spaced-Tapered Arrays	14-6
	Design Procedure for a Symmetrical Space-Tapered Array 14-6	
4.	Probabilistic Approach	14-8
	Theoretical Results 14-9	
	Illustrative Examples 14-18	
	The Mutual Coupling Effect and Blind Angles 14-20	
	The Holey Plate Experiment 14-27	
	Other Remarks 14-32	
5.	References	14-35

		,	

Reflector Antennas

Y. Rahmat-Samii

Jet Propulsion Laboratory

1.	Introduction	15-5
2.	Basic Formulations for Reflector Antenna Analysis	15-6
	Physical Optics Analysis 15-8	
	Geometrical Theory of Diffraction Analysis 15-11	
	Aperture Field Method 15-13	
3.	Simple Formulas for Far Fields of Tapered-Aperture Distributions	15-15
	Two-Parameter Model 15-15	
	One-Parameter Model 15-18	
	Near, Fresnel, and Far Fields 15-21	
4.	Some Important Geometrical Features of Conic-Section–Generated	
	Reflector Antennas	15-23
	Conic Sections 15-23	
	Reflector Surfaces 15-26	
	Intersection with a Circular Cone 15-26	
	Special Cases 15-29	
	Intersection with a Circular Cylinder 15-30	
5.	Offset (Symmetric) Parabolic Reflectors	15-31
	Geometrical Parameters 15-31	
	Idealized Feed Patterns 15-34	
	Edge and Feed Tapers 15-36	
	Reflector Pattern Characteristics for On-Focus Feeds 15-37	
	Reflector Pattern Characteristics for Off-Focus Feeds 15-49	
6.	Dual-Reflector Antennas	15-61
	General Parameters 15-67	
	Performance Evaluation 15-69	
	Cross-Polarization Reduction 15-69	
	Scan Performance 15-71	
	Shaped Reflectors 15-73	

7.	Contour Beam Reflectors	15-80
8.	Feeds for Reflectors	15-84
	Radiation Patterns of Simple Feeds 15-89	
	Complex Feeds 15-94	
	$\cos^{q}(\theta)$ Type Patterns 15-99	
9.	Effects of Random Surface Errors	15-105
10.	Appendix: Coordinate Transformations for Antenna Applications	15-115
	Cartesian and Spherical Components 15-115	
	Eulerian Angles 15-116	
	Feed and Reflector Coordinates 15-117	
	Determination of Eulerian Angles 15-120	
11.	References	15-120

Lens Antennas

J. J. Lee

Hughes Aircraft Company

1.	Introduction	16-5
2.	Design Principles of the Dielectric Lens	16-7
	Rectangular Coordinates 16-7	
	Polar Coordinates 16-8	
3.	Simple Lenses with Analytic Surfaces	16-9
	Lens with a Flat Surface on S ₂ 16-9	
	Lens with a Flat Surface on S ₁ 16-10	
	Lens with a Spherical Surface on S ₁ 16-11	
	Lens with a Spherical Surface on S ₂ 16-12	
4.	Lens Aberrations and Tolerance Criteria	16-12
	Wide-Angle Dielectric Lenses	16-19
	Abbe Sine Condition 16-19	
	Schmidt Corrector 16-23	
	Spherical Thin Lens 16-28	
	Bifocal Lenses 16-30	
6.	Taper-Control Lenses	16-33
	Dielectric Lens Zoning	16-38
	Constrained Lenses	16-41
	Waveguide Lens and Zoning 16-42	10 .1
	Equal Group Delay Lens 16-45	
	Multifocal Bootlace Lens 16-46	
	R-2R Lens 16-48	
	Constrained Analog of Dielectric Lens 16-49	
9.	Inhomogeneous Lenses	16-51
	Luneburg Lens 16-52	1001
	Maxwell Fish-Eye Lens 16-52	
	Hyperbolic Cosine Lens 16-53	

10.	Bandwidth Limitation and Surface Mismatch	16-54
11.	Summary	16-57
12.	References	16-57

Millimeter-Wave Antennas

F. Schwering

US Army CECOM

A. A. Oliner

Polytechnic University

1.	Introduction	17-5
2.	Antennas of Conventional Configuration	17-7
	High- and Medium-Gain Antennas 17-9	
	Spiral Antennas and Fan-Shaped Beam Antennas 17-27	
	Omnidirectional Antennas 17-32	
3.	Surface-Wave and Leaky-Wave Antennas Based on Open Millimeter	
	Waveguides	17-34
	Tapered Dielectric-Rod Antennas 17-36	
	Periodic Dielectric Antennas 17-48	
	Uniform-Waveguide Leaky-Wave Antennas 17-82	
4.	Microstrip Resonator Antennas and Other Printed-Circuit Antennas	17-103
	Microstrip Antennas with Electrically Thin Substrates 17-107	
	Microstrip Antennas with Electrically Thick Substrates 17-122	
	Holographic Antennas 17-129	
5.	Integrated Antennas	17-131
	Tapered Dielectric-Rod Antenna with Integrated	
	Mixer Diode 17-133	
	Monolithic Microstrip Antenna Phased Array 17-134	
	Integrated Near-Millimeter-Wave Imaging Array 17-137	
ó.	References	17-141

Practical Aspects of Phased Array Design

Raymond Tang

Hughes Aircraft Company

1.	Introduction	18-3
2.	Design Specification and Procedure of Phased Array Antennas	18-4
	Selection Criteria of Array Components	18-5
	Radiator Selection 18-6	
	Phase Shifter Selection 18-12	
	Beam-Forming Feed Network Selection 18-17	
4.	Effect of Component Errors on Array Performance	18-26
	References	18-29

Beam-Forming Feeds

J. S. Ajioka

Hughes Aircraft Company

J. L. McFarland

(Late) Hughes Aircraft Company

1.	Introduction	19-3
2.	Constrained Feeds (Transmission-Line Networks)	19-3
	Series Feed Networks 19-3	
	Parallel Feed Networks 19-5	
	True Time-Delay Feeds 19-7	
	Multiple-Beam Matrix Feeds 19-8	
	Multimode Element Array Technique 19-12	
3.	Semiconstrained Feeds (Parallel-Plate Optics)	19-14
	Pillbox 19-19	
	Radial Transmission Line 19-23	
	Meyer Lens 19-32	
	Rotman and Turner Line Source Microwave Lens 19-37	
	Rinehart-Luneburg Lens 19-41	
	DuFort-Uyeda Lens 19-49	
4.	Unconstrained (Optical) Feeds	19-49
	Wide Field of View (Nontrue Time Delay) 19-54	
	Limited Scan 19-56	
	Wide Field of View True-Time-Delay Antenna Systems 19-76	
5.	Optical Transform Feeds	19-91
	Butler Matrix as a Fourier Transformer 19-95	
	Optical Devices as Fourier Transformers 19-95	
6.	Cylindrical Array Feeds	19-98
	Matrix-Fed Cylindrical Arrays 19-101	
7.	References	19-119

Antennas on Aircraft, Ships, or Any Large, Complex Environment

W. D. Burnside

The Ohio State University ElectroScience Laboratory

R. J. Marhefka

The Ohio State University ElectroScience Laboratory

1.	Introduction	20-3
2.	Numerical Simulation of the Antenna	20-5
3.	Numerical Simulation of the Environment	20-7
	Basic Model Simulations—Antennas Mounted on a Curved	
	Surface 20-19	
	Basic Model Simulations—Antennas Not Mounted on a	
	Curved Surface 20-37	
4.	Far Field of Antenna Versus Far Field of Structure	20-53
5.	Numerical Solutions for Airborne Antenna Patterns	20-70
6.	Numerical Solutions for Shipboard Antenna Patterns	20-90
7.	Summary	20-97
8.	References	20-98

Satellite Antennas

C. C. Han

Equatorial Communications Company

Y. Hwang

Ford Aerospace & Communications Corporation

1.	Introduction	21-3
2.	Communication Antennas	21-4
	Antenna System Design 21-6	
	Types of Antennas 21-8	
	The Feed Array 21-27	
	Beam-Forming Networks 21-29	
	Multibeam Antenna System 21-57	
	Design Examples 21-68	
3.	Earth Coverage Antennas	21-74
	The Stepped Horn 21-82	
	The Dielectric-Loaded Horn 21-84	
	The Multistepped Dual-Mode Horn 21-84	
	The Shaped Beam 21-89	
4.	Tracking, Telemetry, and Command Antenna	21-86
	Types of Antennas 21-88	
5.	References	21-110

Remote Sensing and Microwave Radiometry

J. C. Shiue

Goddard Space Flight Center

L. R. Dod

Goddard Space Flight Center

1.	Basic Principles of Microwave Radiometry	22-3
	Blackbody Radiation at Microwave Frequencies 22-3	
	Microwave Radiative Transfer 22-4	
	Surface Emissivity and Reflectivity 22-7	
2.	Applications of Microwave Radiometry to Remote Sensing	22-9
	The Atmosphere 22-13	
	The Ocean Surface 22-14	
	Land Applications 22-15	
3.	A Survey of Existing Spaceborne Microwave Radiometer Antennas	22-16
4.	Antenna Requirements for Remote-Sensing Microwave Radiometry	22-16
	Fundamentals of a Microwave Radiometer 22-21	
	Special Requirements for Antennas for Remote-Sensing Microwave	
	Radiometers 22-27	
5.	Spacecraft Constraints	22-45
	Dynamical Interactions 22-45	
	Thermal Considerations 22-46	
6.	Future Needs and Trends	22-46
	Future Spaceborne Systems 22-46	
7.	References	22-50

Antennas for Geophysical Applications

D. A. Hill

National Bureau of Standards

1	Introduction	23-3
	Electrode Arrays for Resistivity Measurements	23-4
۷.	Theory of Four-Electrode Arrays 23-4	23 1
	Instrumentation of Four-Electrode Arrays 23-7	
3.	Grounded Wire Antennas	23-8
	Time-Harmonic Excitation 23-8	
	Transient Excitation 23-12	
	Receiving Application 23-16	
4.	Loop Antennas	23-17
	Time-Harmonic Excitation 23-17	
	Transient Excitation 23-20	
	Receiving Application 23-22	
5.	Miscellaneous Antennas	23-23
6.	References	23-25

Antennas for Medical Applications

C. H. Durney

University of Utah

M. F. Iskander

University of Utah

1.	Introduction	24-5
2.	Waveguide- and Radiation-Type Antennas	24-9
	Direct-Contact Waveguide Applicators 24-9	
	TEM Waveguide Antenna 24-9	
	Ridged-Waveguide Antennas 24-12	
	Annular Phased Array Applicator 24-16	
3.	Microstrip Antennas and Applicators	24-18
•	Microstrip Patch Antennas 24-18	
	Microstrip Loop Radiators 24-20	
	Microstrip Slot Antennas 24-22	
	Coplanar Transmission-Line Applicator 24-24	
	Arrays of Microstrip Antennas 24-25	
4	Implantable Antennas (Radiators) for Localized Cancer Treatment	24-25
	Antennas for In-Vivo Measurement of the Complex Permittivity of	27-23
J.	Tissue	24-30
		24-30
	Theoretical Basis for the In-Vivo Probes 24-30	
	Detailed Construction of the In-Vivo Probe 24-34	
	Optimizing the Length of the Center Conductor in the Coaxial	
	Sample Holder 24-35	

6. Antennas for Monitoring RF Radiation	24-36
Basic Requirements for Field Probes 24-36	
Detection Methods 24-37	
E- and H-Field Probes 24-37	
Electric-Field Probe 24-38	
Magnetic-Field Probe 24-40	
Design of an RF Personnel Dosimeter 24-43	
7. Other Applicators Used to Produce Hyperthermia	24-43
Coaxial Current Loops 24-45	
Capacitor-Plate Applicators 24-46	
Pancake Coils 24-47	
Helical-Coil Applicators 24-48	
8. Experimental Procedures for Characterizing Antennas Used	
in Medical Applications	24-49
Evaluation of Heating Patterns of Antennas Used in Hyperthermia	24-50
Field Mapping Using Implantable E-Field Probes 24-51	
Use of Phantoms to Measure Power Deposition Patterns	
(Heating Patterns) of Antennas 24-54	
Calibration of E - and H -Field Probes 24-54	
9. References	24-57

Direction-Finding Antennas

R. E. Franks

ESL, a Subsidiary of TRW

1. Introduction	25-3
2. Rotating Antenna Patterns	25-4
Physically Rotating Antenna Systems	25-4
Electrically Rotating Null Patterns	25-11
Instantaneous df Patterns 25-12	
Electrically Rotating High-Gain Pattern	25-14
Doppler Direction Finder 25-16	
3. Multimode Circular Arrays	25-17
4. Interferometers	25-21
Antenna Elements 25-21	
Vehicular-Mounted Interferometers	25-23
5. Multiple-Signal Direction Finding	25-24
6. References	25-25

Standard AM Antennas

C. E. Smith

Smith Electronics, Inc.

1.	Introduction	26-3
2.	Standard Reference Antennas	26-3
	Vertical Radiation Characteristics 26-3	
	Theoretical Self-Resistance and Field Strength 26-8	
	Self Base Impedance Characteristics 26-8	
	Mutual Base Impedance 26-12	
	Control of Pattern Shape and Size 26-17	
	Space Configuration of the Array 26-17	
	Voltage Diagram 26-19	
	Generalized Equation 26-20	
3.	Two-Tower Antenna Patterns	26-22
4.	Power Flow Integration Method to Determine Pattern Size	26-22
	RMS Electric-Field Strength in the Horizontal Plane	26-33
	The Theoretical Pattern	26-34
7.	The Standard Pattern	26-35
8.	The Augmented Pattern	26-36
	Power to Provide System Losses	26-36
10.	Ground Systems	26-37
11.	Directional Antenna Feeder Systems	26-37
	Power Dividing Networks 26-39	
	Impedance-Matching and Phase-Shifting Networks 26-40	
	Antenna Sampling System 26-41	
	Driving-Point Impedance 26-43	
	Directional Antenna Feeder System Design Example 26-45	
12.	References	26-47

TV and FM Broadcast Antennas

G. W. Collins

Harris Corporation

1.	General	27-3
2.	Circularly Polarized TV Antennas	27-8
3.	Vee Dipole Array	27-9
4.	Skewed-Dipole Antenna	27-11
5.	Helical Circularly Polarized Antennas	27-15
6.	Side-Mount Circularly Polarized Antennas	27-20
7.	Horizontally Polarized Antennas	27-23
8.	Batwing Antennas	27-23
9.	Sidefire Helical Antenna	27-24
10.	Traveling-Wave Slot Antennas	27-26
11.	UHF Antennas	27-27
12.	Coaxial Slot Antennas	27-28
13.	Waveguide Slot Antennas	27-29
14.	Zigzag Antennas	27-31
15.	FM Antennas	27-32
16.	Panel FM Antennas	27-35
١7.	Multiple-Antenna Installations	27-37
	References	27-40

Transmission Lines and Waveguides

Y. C. Shih

U.S. Naval Postgraduate School

T. Itoh

The University of Texas

CONTENTS

1.	Introduction	28-5
2.	Transmission Line Equations	28-5
3.	TEM Transmission Lines	28-10
	Two-Wire Line 28-11	
	Circular Coaxial Line 28-20	
	Triplate Stripline 28-22	
4.	Planar Quasi-TEM Transmission Lines	28-30
	Microstrip Lines 28-30	
	Coplanar Waveguides 28-33	
	Coplanar Strips 28-35	
5.	TE/TM Waveguides	28-35
	Rectangular Waveguides 28-38	
	Circular Waveguides 28-42	
	Ridged Waveguides 28-45	
6.	Hybrid-Mode Waveguides	28-47
	Circular Dielectric Waveguides and Image Guides 28-50	
	Rectangular Dielectric Waveguides and Image Guides 28-51	
	Slot Lines 28-53	
	Fin Lines 28-57	
7.	References	28-58

28-3

Propagation

C. H. Liu

University of Illinois

D. J. Fang

Telectronics International, Inc.

1.	Introduction	29-5
2.	Satellite-Earth Propagation	29-7
	Free-Space Loss Along a Satellite-Earth Path 29-8	
	Gaseous Attenuation 29-8	
	Rain Attenuation 29-10	
	Rain Depolarization 29-14	
	2.4	
	Group Delay 29-15	
	Scintillation 29-16	20.21
3.	Propagation beyond the Horizon via the Ionosphere	29-21
	Ionospheric Propagation at High Frequency 29-21	
	Sky-Wave Propagation at Medium Frequency 29-25	
	Ionospheric Waveguide-Mode Propagation at Very Low and	
	Extremely Low Frequencies 29-27	
	Scatter Propagation at Very High and Ultrahigh	
	Frequencies 29-28	
1	Tropospheric and Surface Propagation	29-30
4.		2, 00
	Refractive Thack of the Timespress	
	Line-of-Sight Propagation 29-32	
	Multipath Propagation over an Earth Surface 29-37	
	Diffraction 29-41	
	Surface-Wave Propagation 29-44	
	Tropospheric Scatter Propagation 29-46	

5.	Noise			29-47
	Atmospheric Noise 2	29-50		
	Emission by Atmospheric	c Gases and Precipitation	29-50	
	Extraterrestrial Noise	29-50		
	Human-Made Noise	29-51		
6.	References			29-53

Antenna Response to Electromagnetic Pulses

K. S. H. Lee

Dikewood, Division of Kaman Sciences Corporation

30-3
30-4
30-7
30-8
30-17
30-31

Radome Electromagnetic Design

G. P. Tricoles

General Dynamics

1.	Introduction	31-3
	Radome Performance Parameters 31-3	
	Variables in the Radome Performance Parameters 31-4	
2.	Physical Description of Radome Effects	31-5
	Fields in Radome-Bounded Regions; Constituent Waves 31-5	
	Field Distribution Measurement 31-6	
	Wavefront Aberrations and Boresight Error 31-7	
	Diffraction Methods for Radome Design 31-8	
3	Plane Wave Propagation through Flat Dielectric Sheets	31-10
٠.	Incidence on a Plane Boundary between Two Homogeneous	
	Dielectrics 31-10	
	Incidence on Flat, Homogeneous, Dielectric Sheets 31-13	
	Incidence on Multilayer Dielectric Sheets 31-14	
4	General Aspects of Theoretical Design	31-18
5	Plane Wave Propagation through Dielectric Sheets	31-20
٥.	Direct-Ray Method 31-20	
	Surface Integration 31-24	
6	Antenna Patterns	31-25
	Examples of Boresight Error	31-27
8	The Moment Method	31-27
	Comments on Materials	31-29
	References	31-30

Measurement of Antenna Radiation Characteristics on Far-Field Ranges

E. S. Gillespie

California State University, Northridge

1	Introduction	32-3
	Radiation Patterns and Pattern Cuts	32-6
	Antenna Ranges	32-8
٥.	Positioners and Coordinate Systems 32-8	
	11.00.000 1.000 0.000	
	Outdoor Ranges 32-19	
	Indoor Ranges 32-25	
	Instrumentation 32-30	
	Range Evaluation 32-33	
4.	Measurement of Radiation Characteristics	32-39
•	Amplitude Patterns and Directivity Measurements 32-39	
	Antenna Gain Measurements 32-42	
	Polarization Measurements 32-51	
_	1 Old 12 ditor Medsure recess =====	32-63
5.	Modeling and Model Measurements	2 2 00
	Theory of Electromagnetic Models 32-65	
	Materials for Electromagnetic Models 32-69	
	Scale-Model Construction, Instrumentation, and	
	Measurement 32-74	
6.	References	32-87

Near-Field Far-Field Antenna Measurements

Jørgen Appel-Hansen

Electromagnetics Institute, Technical University of Denmark

1	Introduction	33-3
		33-3
	General Concepts	33-5
3.	Current Distribution Measurements	
4.	Planar Scanning	33-7
	Cylindrical Scanning	33-10
	Spherical Scanning	33-12
0.	Splicifical Scalling Pages	33-15
7.	Error Budgets for Scanning Ranges	33-18
8	Scanning Ranges	
	Plane-Wave Synthesis Techniques	33-21
		33-22
10.	Compact Range	33-24
11	Defocusing Techniques	
12	Extrapolation Techniques	33-26
		33-28
13.	References	55 _5