目 次

【 I 総論編】

	電子材料の展望
1 半導体材料	3 6 絶縁材料
2 半導体実装材料	3 7 磁性材料
3 半導体製造材料	4 8 光材料
4 導電材料	4 9 結晶材料
5 超電導材料	4
【Ⅱ 半 導 体 編】	
第1章	シリコン半導体
1 結晶成長法	9 4 シリコン結晶の大口径化 11
2 シリコン(ケイ素)・シリコン単結晶	9 5 シリコン単結晶の製造法 11
3 シリコン同位元素	9 6 シリコン・ウエハーの加工 14
_ 第2章 シリコン	ン単結晶のIC,LSI への応用_
1 真空管に代替する半導体トランジスタ	17 3 n型, p型半導体を利用した電子回路パーツ … 19
2 半導体特性を利用したn型,p型,i型化	17 4 集積回路の分類 21
第3章	IC, LSI の製造法
1 微細電子回路の形成	23 5.2 イオンドーピング, イオンインプラン
2 Siウェハーの酸化, 窒化···································	· · · · · · · · · · · · · · · · · · ·
3 リソグラフィ (露光転写)	
4 エッチング(食刻)	33 6.1 常圧CVD法 ······· 43
4.1 ウエットエッチング	33 6.2 低圧CVD法 ······· 45
4.2 ドライエッチング	35 6.3 プラズマCVD法 ··········· 45
5 ドーピング	38 6.4 スパッタ法による金属薄膜形成 45
5.1 熱拡散法	
第4章	半導体製造材料
1 マスク	48 5 シリサイド
2 フォトレジスト	48 6 IC用電極······ 51
3 フォトレジスト補完材	50 7 半導体用ガス 52
4 サセプター	51 7.1 エピタキシャルガス 53

7.2 ドーピングガス	l	超純水	56
第5章	三次元回	路素子_	
1 三次元回路素子の概念		XMOSトランジスタ	60
第6章	耐環境強	化素子	
1 耐環境強化素子の概念2 炭化ケイ素 (SiC) 半導体の登場		SiC半導体の製法と素子化	63
第7章	化合物	半導体	
1 化合物半導体の概念	65	(HET)	70
2 化合物半導体単結晶の製造法	67 5	超格子素子	71
2.1 HB法とLEC法 ······	67 6	チャープ超格子	71
2.2 pBNを利用した直接合成法	68 7	分子線結晶生成(MBE)	73
2.3 MLEC法とスーパー MLEC法	69 8	ファンデルワールス力利用の超格子結晶成	
3 高速電子移動素子 (HEMT)	70	長技術	74
4 ホット・エレクトロン・トランジスタ	9	有機金属気相成長(MO-CVD)	75
第8章	太陽電池	也素子_	
1 シリコン単結晶太陽電池素子	77 2	印刷式 II - IV族化合物半導体薄膜太陽電池…	78
第9章 アモルフ	ァス・シリコ	コン(a-Si)半導体	
	80 l	開発	82
2 光電変換率向上への開発動向		2.3 多層構造広域集光型セルの開発············	83
2.1 ワイドバンドギャップn層の開発努力…			83
2.2 p型a-SiC/a-Si:H接合セルの		アモルファス半導体の大面積化と単産性	
	1 0	/ ・・・ / / / 一条件の八個個間に十座は	04
第 10 :	章 超電導	¹ 素子	
1 ジョセフソン接合の原理	86 4	パラメトロン超電導素子	88
2 ジョセフソン接合の基本構造	86 5	ジョセフソン素子の応用	89
3 ジョセフソン素子の開発動向			

【Ⅲ 半導体実装材料編】

第11章 ICパッケージ

1 フラットパッケージ,デュアルインパッケ	6 リードフレーム 98
- ジ····· 93	7 ボンディングワイヤ 98
2 チップキャリア 94	8 ダイボンディング 99
3 フィルムキャリア 95	9 封止材料 99
4 フリップチップ 95	10 ICチップ表面コート材 101
5 パッケージ材料による分類 96	
第 12 章 キ	持 殊基板
1 ハイブリッド IC	1.3 多様化する実装方式 103
・ 1.1 ハイブリッド ICの概念 102	2 SOS (silicon on sapphire) 基板 104
1.2 ハイブリッドICの種類と性質102	3 SOS(silicon on silicon)基板············105
	'
451 1 0 -35	始长(甘传)
	線板(基板)
1 配線板(基板)の概念106	11 セラミック多層配線板133
2 配線板(基板)の分類107	12 実装部品としての抵抗, コンデンサ 136
3 銅張積層配線板107	12.1 厚膜抵抗,厚膜コンデンサ136
4 多層プリント配線板	12.2 チップ抵抗とチップ・コンデンサ 137
5 銅メッキ(フルアディティブ)配線板 118	12.3 チップインダクタ141
6 フレキシブル配線板 (FPC) 121	13 複合配線板
7 マルチワイヤ配線板(MWB) 121	13.1 ホーロー配線板142
8 チップキャリアと SMT基板123	13.2 メタルコア配線板143
9 はんだとはんだ付け装置 125	14 アモルファス配線板143
10 セラミック配線板130	
【IV 機能材料編】	
Ex. INCIDE 13 4 LANGE	
第14章 圧電	材料,焦電材料
1 圧電セラミック149	1.7 表面弾性波 (SAW) 用圧電単結晶, 薄
1.1 BaTiO₃ ······ 149	膜材料151
1.2 Pb (Zr-Ti)O₃,(PZT)系 ······149	1.8 超音波モーターへの応用151
1.3 A (B ₁ , B ₂)O ₃ -PZT系 ·······150	2 焦電セラミックス154
1.4 PbTiO₃系 ······ 150	3 圧電フィルム155
1.5 PbNb₂O₃系 ······151	4 焦電フィルム
1.6 非鉛系圧電セラミックス151	5 圧電・焦電フィルムの応用157

第15章 固体電解質

3 4	固体電解質の概念159アルカリイオン導電体1592.1 β-アルミナ,β"-アルミナ1592.2 Li₃Nほか160Ag⁺および Cu⁺ イオン導電体160O²-イオン導電体1604.1 安定化ジルコニア160		イオン・電子混合導電体 161 固体電解質の応用 161 6.1 Na - S電池 161 6.2 Li 電池 162 6.3 固体電解質型燃料電池 162 6.4 酸素センサー 162 高分子固体電解質 163
	4.2 ThO ₂ , CeO ₂ 161		
	第 16 章	磁性	材 料
1 2 3 4 5	 硬質磁性材料と軟質磁性材料・・・・ 164 永久磁石・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6 7 8 9	ネオジム - 鉄磁石169パーマロイ169シート磁石172磁気冷凍システム173磁性流体材料175
	第 17 章 (6	兹 気 記	録材料
1	磁気記録のしくみ177	6	フロッピーディスク185
2	磁気記録媒体としての微粒子177	7	磁気ヘッド187
3	磁気テープ179	8	アモルファス磁気ヘッド189
4	デジタルオーディオテープ (DAT) 182	9	垂直磁気記録190
5	磁気ディスク184	10	バリウムフェライト191
į	5.1 塗膜ディスク184	11	垂直磁気記録用磁気ヘッド 193
(5. 2 薄膜ディスク 185	12	磁気バブル記録195
	5.3 酸化物薄膜ディスク185	13	垂直ブロッホライン・メモリ 196
. [5.4 金属薄膜ディスク185	14	磁気カード198
	第 18 章 - 熱		協実で
	<u> </u>	然电发	換素子
1	熱電変換材料	4	原子力電池
2	アモルファス熱電変換素子 202	5	熱電変換材料の応用可能性 203
3	ナトリウムイオン熱電気変換システム 202		
	【V オプトエレクトロニクス材料編】		
	第19章 発光素	素子(光	半導体素子)
1	レーザー207	2	LED, 発光ダイオード 209

3	レー	-ザーダイオード, LD半導体レーザー … 213	3.3 多重量子井戸半導体レーザー215
	3. 1	LDのしくみ213	4 光増幅素子 216
	3. 2	LDの材質 213	5 OEIC·光IC·······217
		第 20 章 光通	言用光ファイバー
1	光っ	ファイバー通信の概念 222	13 赤外線光ファイバー238
2	光っ	ファイバー通信のメリット 223	13.1 重金属酸化物ガラスファイバー 239
3	光フ	ファイバー通信のデメリット 224	13.2 カルコゲン化物ガラスファイバー 239
4	光フ	ファイバーの材質 224	13.3 ハロゲン化物ガラスファイバー 239
5	光フ	ファイバー通信システム技術の開発指向… 225	13.4 ハライド化合物単結晶ファイバー 239
6	石英	もガラス光ファイバー 226	- 13.5 酸化ゲルマニウム系光ファイバー 239
7	光フ	ファイバーケーブル	14 光デバイス
8	光二	コネクター231	14.1 分布帰還 (DFB) 型レーザーダイオー
9	光フ	. ファイバー自動融着接続装置 234	۴······ 240
10	光•	・電力複合ケーブル 235	14.2 光スイッチ240
11	プラ	ラスチック光ファイバー 235	14.3 光スターカップラ241
12	偏波	支面保存光ファイバー,定偏波光ファイ	 14.4 光合波分波器······241
	バー	- (SPF)237	
			'
		Mr. o. a. Tr.	. 15 Library
		第21章 レ	<u>- ザー材料</u>
1	固体	なレーザー243	2 波長可変レーザー 247
	1. 1	Nd³+添加 YAGレーザー243	3 SHG (第 2 高調波発生) 248
	1. 2	Nd:Cr添加GSGG レーザー 243	4 自由電子レーザー(FEL)250
	1.3	Nd添加GGGレーザー, Nd, Ce:	5 エキシマレーザー252
		YLF レーザー 244	6 化学レーザー255
	1.4	Nd添加ガラスレーザー 245	7 X線レーザー256
	1.5	LNAレーザー, BELレーザー 246	8 色素レーザー257
		第 99 音 レーザーカ	□工機, レーザーメス
		おひま レ) //	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1	レー	- ザー加工機の概念 260	4 ガスレーザー加工機の開発動向264
2	レー	- ザー加工機の種類 262	5 3 次元レーザー加工システム 265
3	固体	メレーザー加工機の開発動向 263	6 レーザーメス
		第 23 章 光	記録材料
1		ジタルオーディオディスク(DAD) 268	6 非球面レンズ283
2		"オ・ディスク(VD) 274	6.1 非球面レンズの概念 283
3		・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6.2 CD (コンパクトディスク) への応用 … 283
4		: 替え可能の光ディスク 279	6.3 ガラス,プラスチックレンズの得失285
5	多ビ	゛ーム半導体レーザー 282	7 磁気カー効果利用の光磁気ディスク 285

8 光化学ホールバーニング (PHB) メモリ 29	92 9 光カード
第 24 章	光プリンター材料
1 レーザープリンター	1.5 デジタルレーザープリンター 298 2 液晶(シャッター)プリンター 299
第 25 章	ディスプレー材料
1 LED, SLD 30 2 陰極管, CRT 30 3 蛍光体 30 4 液晶, LCD 30 4.1 液晶の概念と特性 30 4.2 スメクチック液晶 31 4.3 ネマチック液晶 31 4.4 コレステリック液晶 31	3 4.6 液晶テレビ 316 5 蛍光表示管, VFD 318 6 プラズマディスプレー 319 6 7 ECD 321 0 8 EL 321 0 9 タッチパネル 325
第 26 章	_ 受 光 素 子
1 光センサーの種類 32 2 CCD (charge coupled device)・電荷結合素子 33 2.1 CCDの概念 33	2.3 固体撮像素子としてのCCD 331 2.4 CCDの応用 333
_ 第 27 章 _ 7	与機非線形光 学 材料
1 有機非線形光学材料の概念····································	
【Ⅵ センサー材料】	
第 28 章	センサー材料
はじめに	3 7 湿度センサー 355 8 受光センサー 355 9 除霜センサー 355 10 光ファイバー応用センサー 355 11 検出用スイッチセンサー 357
353	3 12 超音波センサー 358

	バイオセンサー	15 インテリジェントセンサー, スマートセン サー・・・・・・・・・・・363
	【Ⅵ 金属材料編】	
	第 29 章	高融点金属
1 2 3	高融点金属の一般特性・・・・・369 ニオブ・・・・・・370 モリブデン・・・・・370	4 タンタル 371 5 タングステン 372
	第 30 章 走	超電導材料
1	超電導材料の概念	4 金属間化合物376
2	超電導材料の一般特性 373	5 極低温材料378
3	ニオブーチタン合金375	
1 2	形状記憶合金の概念 380 形状記憶合金の一般特性 380	形状記憶合金 3 形状記憶合金の応用例382
	第 32 章 - 7	水素吸蔵金属
1	水素吸蔵金属の特性	2 水素吸蔵金属の応用386
		プモルファス金属
1 2	アモルファスの概念	5 アモルファス磁気ヘッド
3	アモルファス金属の特性 392	7 アモルファス巻鉄心400
4	アモルファス金属繊維395	8 アモルファスフェライト401
	第 34 章	レアメタル
		404
	【Ⅷ ファインセラミック,無機材料編】	
	第 35 章 し	<u> </u>
1		
1	セラミックス ファインセラミックスの	概念409

2	ファインセラミックスの高機能化······· 409 セラミックスの格子欠陥の制御····· 411	4 ワイブル係数414			
	第36章 セラミ	ックスの製造技術			
1	原料粉体微粒子の製法 415	4 加工法			
2	成型法415	5 セラミックスの非破壊検出法418			
3	焼成416				
	第37章 ファイ	<u>(ンセラミックス</u>			
1	窒化ケイ素 (Si ₃ N ₄)······ 420	7 炭窒化ホウ素427			
2	炭化ケイ素 (SiC)······ 423	8 コージェライト429			
3	サイアロン424	9 透明セラミックス429			
4	窒化アルミニウム 425	10 PLZT(ランタン酸・ジルコン酸・チタン			
5	ジルコニア, 部分安定性ジルコニア (PSZ)… 425	酸鉛)430			
6	窒化ホウ素(ボロンナイトライド) 426				
1 2	第 38 章 無 無機高分子の概念・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	機 高 分 子 3 架橋,層状無機高分子 433 4 網状無機高分子 434			
	第39章 結	<u> </u>			
1	合成水晶435	6 BSO445			
2	合成サファイア438	7 BGO446			
3	合成ダイヤモンド439	8 YAG446			
4	立方晶窒化ホウ素 444	9 アレキサンドライト447			
5	GGG 445				
第 40 章 希土類 レアアース					
1	希土類の概念448	2 希土類の種類452			
		102			
【Ⅸ有機材料編】					
	第 41 章 エンジニア	<u>リングプラスチック</u>			
1	エンジニアリングプラスチックの種類 457	からみた材料選択 459			
2	エンジニアリングプラスチックの要求特性	400			
	'				

第 42 章 熱可塑性エンジニアリングプラスチック

1	ポリアミド462	13	ポリフェニレンサルファイド (PPS) 486
2	ポリアミドイミド464	14	フッ素樹脂488
3	ポリアセタール466	15	AAS樹脂 ······· 492
4	ポリカーボネート (PC)467	16	ABS樹脂 ······ 492
5	変性ポリフェニレンオキサイド(変性PPO)…468	17	ACS樹脂 ······ 495
6	ポリエチレンテレフタレート(PET) 471	18	AES樹脂 ······ 495
7	ポリブチレンテレフタレート(PBT) 472	19	AS樹脂499
8	ポリアリレート474	20	ポリメチルペンテン(TPX)(メチルペン
9	ポリサルフォン476		テンポリマー)499
10	ポリエーテルサルフォン (PES)478	21	超高分子量ポリエチレン(UHMW-PE) … 501
11	ポリエーテルエーテルケトン(PEEK) 481	22	アイオノマー樹脂501
12	ポリエーテルイ. ミド484	23	ポリエステルエラストマ503
	第 43 章 熱硬化性エン	ジニアリ	l ングプラスチック
1	フェノール樹脂508	5	シリコーン樹脂······ 515
2	ジアリルフタレート (DAP) 508	6	ポリイミド樹脂517
3	不飽和ポリエステル樹脂 511	7	ポリイミドフィルム520
4	エポキシ樹脂512		
	第 44 章 特	殊フィノ	レム材料
1	感光性フィルム523	3	透明導電性フィルム527
2	偏光フィルム		2014年12月7日
L	WEST 2 4 77 - 050	I	
	第 45 章 _ 導	電性高分	子材料
1	導電性プラスチック(30%以上カーボン	5	有機化合物超電導体539
	添加)530	6	有機光半導体 (OPC)541
2	導電性プラスチック(フィラー添加) 532	7	電磁波シールド材料542
3	導電性接着剤	8	電波暗室
4	有機半導体	9	電波吸収複合材料547
		·	
	『マーバイナサ変伝』		
	【X バイオ材料編】		
	第 46 章	酵	素
	<u> </u>	7	<u> </u>
1	酵素の概念	3	酵素の分類
2	酵素の特性 553	4	導電性酵素膜

	第 47 章 モノクローナル抗体
	55
	第 48 章 分子ダイオード
	55º
	第49章 バイオチップ
	バイオチップの概念
	第 50 章 ラングミュア・ブロジェット膜(LB膜)
1	LB膜の概念 565 2 LB膜利用技術の開発動向 56
[]	I 資 料 編】
ľĦ	5 21 57