CONTENTS

ZEKE Spectroscopy: High-Resolution Spectroscopy with Photoelectrons	1
By Klaus Müller-Dethlefs, Edward W. Schlag, Edward R. Gran Kwanghsi Wang and B. Vincent McKoy	t,
New Ways of Understanding Semiclassical Quantization	105
By P. Gaspard, D. Alonso, and I. Burghardt	
Author Index	365
Subject Index	379

ZEKE SPECTROSCOPY: HIGH-RESOLUTION SPECTROSCOPY WITH PHOTOELECTRONS

KLAUS MÜLLER-DETHLEFS AND EDWARD W. SCHLAG

Institut für Physikalische und Theoretische Chemie, Technische Universität München, D-85747 Garching, Germany

EDWARD R. GRANT

Department of Chemistry, Purdue University, West-Lafayette, IN 47907

KWANGHSI WANG AND B. VINCENT McKOY

Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA 91125*

CONTENTS

- I. Introduction
 - A. Evolution of Photoionization Experiments
 - B. Principle of ZEKE Detection
 - C. The Delayed Pulsed-Field Ionization of ZEKE Rydberg States
 - D. Details of the ZEKE Experiment: Towards Highest Resolution
- II. Rotationally Resolved ZEKE Spectra
 - A. Nitric Oxide
 - B. Benzene
 - 1. The Electronic Ground State of the Benzene Cation
 - 2. The $6^1(e_{2g})$ Excited Jahn-Teller State
- III. Theory and Formulation
 - A. (n+1') REMPI for Linear Molecules
 - 1. Rotationally Resolved Photoelectron Spectra
 - 2. Photoelectron Matrix Element
 - 3. Parity Selection Rules

^{*} Contribution No. 8844.

Advances in Chemical Physics, Volume XC, Edited by I. Prigogine and Stuart A. Rice. ISBN 0-471-04234-X © 1995 John Wiley & Sons, Inc.

- B. (n+1') REMPI for Asymmetric Tops
 - 1. Rotationally Resolved Photoelectron Spectra
 - 2. Photoelectron Matrix Element
 - 3. Parity Selection Rules
- C. (n+1') REMPI for Symmetric Tops
- D. Computational Procedures
- IV. Results and Discussion
 - A. Linear Molecules
 - 1. Single-Photon Ionization of NO
 - 2. Single-Photon Ionization of OH
 - 3. Single-Photon Ionization of CO and N₂
 - 4. (2+1) REMPI of HBr
 - 5. (2+1) REMPI of OH
 - B. Nonlinear Molecules
 - 1. Single-Photon Ionization of H₂O
 - 2. Single-Photon Ionization of H₂CO
 - 3. Single-Photon Ionization of CH₃
- V. Deviations of ZEKE Intensities from the Predictions of Direct Ionization
 - A. Effects of Spin-Orbit Relaxation and Rotational Coupling in the (2+1) Threshold Photoionization of HCl and DCl
 - 1. Rotational Line Intensities
 - 2. Intensities of Transitions to the Spin-Orbit Substates of HCl⁺
- VI. Three-Color Triple-Resonant Threshold Photoionization of NO₂
 - A. Electronic Structure and Photoselection
 - B. State-to-State Threshold Photoionization of NO₂: Vibrational Structure of NO₂⁺
 - 1. Rotational Structure
 - 2. Rotational Intensities: Complex Resonances and the Effects of Intramolecular Relaxation
 - C. Intensities at Vibrationally Excited Thresholds: Effects of Vibrational Relaxation
- VII. Vibrationally Resolved Structure of the para-Difluorobenzene Cation
 - A. ZEKE Spectra
 - B. ZEKE Spectra via Different Vibrational Intermediate S_1 States
 - 1. ZEKE Spectrum from the S_10^0
 - 2. ZEKE Spectrum from the S_16^1
 - C. Self-Consistent Field ab initio Computations of the p-DFB Cation
- VIII. Vibrationally Resolved Structure of the Phenol-Water Cation
 - A. ZEKE Spectra
 - 1. Ionization Energy
 - 2. Intermolecular Vibrations
 - B. Comparison with ab initio Results
 - 1. Intramolecular Vibrations
 - 2. Intermolecular Vibrations
 - IX. Conclusions and Outlook

Acknowledgments

References

NEW WAYS OF UNDERSTANDING SEMICLASSICAL QUANTIZATION

P. GASPARD, D. ALONSO, AND I. BURGHARDT

Service de Chimie Physique and Centre for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, B-1050 Brussels, Belgium

CONTENTS

- I. Introduction
 - A. General Introduction
 - B. Brief Historical Introduction and General Background
- II. Quantum Time Evolution, Path Integrals, and Semiclassical Limit
 - A. Propagator and Green Operator
 - B. Trace and Level Density
 - C. Observable Quantities
 - 1. Interaction with Light
 - 2. Scattering between Atomic Particles
 - D. Weyl-Wigner Representation and the Quasiclassical Method
 - E. Short-Wavelength Asymptotics of Schrödinger's Equation
 - 1. From Schrödinger's to Hamilton's Equation
 - 2. Classical Probability Conservation and the Van Vleck-Morette Matrix
 - 3. Jacobi-Hill Equation and Linear Stability
 - 4. Semiclassical Propagator
 - F. Feynman Path Integrals and the Semiclassical Method
 - 1. Propagator as a Path Integral
 - 2. Stationary-Phase Integration
 - 3. Second Variation of the Action and Jacobi-Hill Equation
 - 4. Classical Green Function as Resolvent of the Jacobi-Hill Operator
 - 5. ħ-Expansion of the Propagator
- III. Classical Dynamics
 - A. Linear Stability in Phase Space
 - B. Examples of Mechanical Systems
 - 1. Hamiltonian Systems
 - 2. Hamiltonian Mappings
 - 3. Billiards
 - C. Smale Horseshoe and Symbolic Dynamics
 - 1. Horseshoe Map

Advances in Chemical Physics, Volume XC, Edited by I. Prigogine and Stuart A. Rice. ISBN 0-471-04234-X © 1995 John Wiley & Sons, Inc.

- 2. Symbolic Dynamics
- 3. Examples
- 4. Generalizations
- D. Thermodynamic Formalism
- IV. Time Domain: Trace of the Propagator
 - A. Regularizations
 - B. Short-Time Behavior
 - C. Path Integral
 - D. Contribution of Equilibrium Points
 - E. Contribution of Periodic Orbits
 - 1. Real, Unstable, Isolated Periodic Orbit
 - 2. Other Types of Periodic Orbits
 - F. Simple Examples
 - 1. Harmonic Oscillator
 - 2. Morse Oscillator
- V. Energy Domain: Equilibrium-Point Quantization
 - A. Evaluation of the Integral
 - B. Discussion
- VI. Energy Domain: Periodic-Orbit Quantization
 - A. Contribution of the Paths of Zero Length
 - B. Contribution of Unstable and Isolated Periodic Orbits
 - 1. Stationary-Phase Integration
 - 2. The Maslov Index
 - C. Dynamical Zeta Functions
 - 1. Level Density and Staircase Function
 - 2. Selberg and Ruelle Zeta Functions
 - 3. Convergence and the Topological Pressure
 - 4. Approximating the Zeta Functions
 - 5. Bounded Systems
 - 6. Inclusion of the ħ-Corrections
 - D. Complex Periodic Orbits
 - 1. Tunneling in 1F Systems
 - 2. Tunneling in 2F Systems
 - 3. Partition Functions of Statistical Mechanics and Thermal Reaction Rates
 - E. Nonisolated Periodic Orbits
 - F. Periodic Orbits Close to Bifurcations
- VII. Semiclassical Averages of Quantum Observables
 - A. Diagonal Matrix Elements
 - B. Semiclassical Photoabsorption Cross-Section
- VIII. Quantum Billiards
 - A. Wave Equation and Generalities
 - B. Multiple Scattering Expansion
 - C. Stationary Phase Method and Periodic Orbits
 - D. Contribution of the Regular Periodic Orbits
 - E. Contribution of the Degenerate Periodic Orbits
 - F. Resummation
 - G. Application to the Disk Scatterers
 - 1. Three-Disk Scatterer
 - 2. Two-Disk Scatterer
 - IX. Matrix Hamiltonians
 - A. Diagonalization of Matrix Hamiltonians
 - B. Two-Surface 1F Model and Surface Hopping
 - C. Conical Intersection and Geometric Phase

- 1. Isotropic Conical Intersection
- 2. Anisotropic Conical Intersection
- X. Atomic and Molecular Hamiltonians
 - A. Coulomb Hamiltonian
 - B. Atomic Systems
 - C. Molecular Systems
 - 1. Born-Oppenheimer Hamiltonian
 - 2. Rotational-Vibrational Hamiltonian
 - D. Coulomb and BO Potentials: Comparison of Their Semiclassical Properties
- XI. Molecular Vibrograms: Spectroscopy in the Time Domain
 - A. The Principle of Vibrograms
 - B. Bounded Molecular Systems
 - 1. Morse-Type Model for $I_2(\tilde{X}^1\Sigma)$
 - 2. $CS_2(\tilde{X}^1\Sigma_g^+)$: Fermi Resonance
 - C. Unbounded Molecular Systems
 - 1. CO₂
 - 2. H₂S and D₂S
 - 3. Remarks
- XII. The Molecular Transition State and Its Resonances
 - A. The HgI₂ System
 - B. Classical Dynamics and a Hamiltonian Mapping for the HgI₂ System
 - 1. From the Flow to the Mapping
 - 2. Properties of the Mapping
 - 3. Back to the Flow
 - C. Equilibrium Point Quantization of the Transition State
 - D. Periodic-Orbit Quantization of the Transition State
 - 1. The Low-Energy Regime
 - 2. The Intermediate Regime
 - 3. The High-Energy Regime
 - E. Wavepacket Propagation
 - F. Discussion of the Transition State Dynamics of HgI₂
 - G. Comparison of the Classical Repellers of ABA and ABC Molecules
 - H. Inclusion of Bending and Extension to Larger Molecules: Equilibrium Point Quantization
 - I. Inclusion of Rotational Motion: Equilibrium Point Quantization
 - J. Resonances in Nonseparable and Statistical Regimes
 - K. General Discussion
- XIII. Semiclassical Electronic Regimes in Atomic and Solid-State Systems
 - A. Highly Excited Electronic States
 - B. Hydrogen Negative Ion
 - 1. Classical Dynamics of H
 - 2. Semiclassical Quantization of H⁻
 - C. Mesoscopic Semiconducting Devices
- XIV. Discussion and Conclusions
 - A. Classical Chaos, Periodic Orbits, and Quantum Spectra
 - B. Scattering Systems and Applications to Chemical Reaction Dynamics
 - C. Periodic-Orbit Quantization versus Equilibrium Point Quantization
 - D. ħ-Expansion and the Implications of Anharmonicities
 - E. Other Problems Related to the Semiclassical Limit

Acknowledgements

Note Added in Proof

References