

The Spectroscopy of H_3^+	1
By Iain R. McNab	
Supercooled Liquids	89
By Udayan Mohanty	
Ternary Systems Containing Surfactants	159
By Mohamed Laradji, Hong Guo, Martin Grant, and Martin J. Zuckerman	
Colored Noise in Dynamical Systems	239
By Peter Hänggi and Peter Jung	
FORMULATION OF OSCILLATORY REACTION MECHANISMS BY DEDUCTION FROM EXPERIMENTS	327
By Janet D. Stemwedel, Igor Schreiber, and John Ross	
Author Index	389
Subject Index	405

THE SPECTROSCOPY OF H₃

IAIN R. McNAB

Department of Physics, The University of Newcastle upon Tyne, Newcastle upon Tyne, NE1 7RU, UK

- I. Introduction
- II. Theory
 - A. Born-Oppenheimer Approximation
 - 1. Calculations of Equilibrium Geometry
 - 2. Calculations of Potential Energy Surfaces
 - B. Vibration-Rotation Levels in Ground State H₃⁺
 - 1. Normal Modes of H₃⁺
 - 2. Quantum Numbers, Selection Rules, and All That
 - a. Vibration-Rotation Quantum Numbers.
 - b. Good Quantum Numbers
 - c. Selection Rules
 - 3. The Structure of Vibration-Rotation Energy Levels
 - 4. Influence of Nuclear Spin
 - C. Approaches to the Assignment of Spectroscopic Data
- III. Laboratory Measurements of Low-Energy Spectra
 - A. The Spectroscopy of H₃⁺
 - B. The Spectroscopy of D₃⁺
 - C. The Spectroscopy of H₂D⁺ and D₂H⁺
 - D. Discussion
- IV. Astrophysical Measurements of H₃ Spectra
 - A. Astrophysical Importance of H₃⁺
 - B. H₃⁺ Ion in the ISM
 - 1. Observation of H₂D⁺?
 - 2. Observation of H₃⁺?
 - C. Measurements of H₃⁺ in Planetary Atmospheres
 - 1. The Spectrum of the Jovian Aurora
 - 2. The Spectrum of the Uranian Aurora
 - 3. The Spectrum of the Saturnian Aurora
 - D. Measurements of H₃⁺ in Supernova 1987a?
 - E. Discussion

Advances in Chemical Physics, Volume LXXXIX, Edited by I. Prigogine and Stuart A. Rice. ISBN 0-471-05157-8 © 1995 John Wiley & Sons, Inc.

- V. The H₃⁺ Predissociation Spectrum
 - A. Experimental Details
 - B. The Predissociation Spectrum
 - 1. The Experimental Lifetime Constraints
 - 2. Kinetic Energy of Fragmentation
 - 3. The Pseudo-Low-Resolution Spectrum
 - 4. Isotope Studies
 - 5. Summary of the Predissociation Spectrum Features
 - C. Theoretical Understanding of the H₃⁺ Predissociation Spectrum
 - 1. Rigid-Rotor Model
 - 2. Nature of States Involved in the Spectrum
 - 3. Correspondence between Kinetic Energy Release and Angular Momentum
 - 4. Formation of Highly Energetic States
 - 5. Isotope Effects
 - 6. The Origin of the Clumps
 - 7. Summary of the Theoretical Predictions
 - D. Further Measurements of the Predissociation Spectrum
 - 1. Correspondence of High-Intensity Lines and Low Kinetic Energy Release
 - 2. Convolutions of the New High-Resolution Data
 - 3. Isotope Effects
 - a. Resonant Transitions in H₂D⁺ and D₂H⁺
 - b. Studies of the Nonresonant Background Dissociation
 - 4. Lifetimes of the Predissociating States
 - a. Direct Measurement of Initial State Lifetimes
 - b. Lifetimes of Upper States
 - 5. Multichannel Dissociation
 - 6. Summary of the Additional Features
 - E. Discussion
- VI. Excited Electronic States of H₃⁺
- VII. Conclusion

Acknowledgments

SUPERCOOLED LIQUIDS

UDAYAN MOHANTY

Eugene F. Merkert Chemistry Center, Department of Chemistry, Boston College, Chestnut Hill, MA 02167, USA

- I. Entropic Theories
 - A. General Considerations
 - B. Configurational Entropy Model
 - C. Generalization of Adam-Gibbs Model
 - 1. Topological Features
 - 2. WLF and VTF Parameters
 - 3. Nonlinearity of Relaxation
 - D. Renormalization Group Analysis
 - 1. Size Dependence of Rearranging Region
 - 2. Effective Couplings
 - 3. Scale Dependence of Barrier Height
 - E. Entropy of Supercooled Liquid
- II. Slow and Fast Modes
 - A. Entropic Basis of the Vogel-Tammann-Fulcher Relation
 - B. Decoupling of Viscous and Configurational Modes
- III. Signatures of Glass Transition
 - A. Equilibrium Indicators
 - B. Dynamical Indicators
 - C. Diverging Correlation Length
 - D. Nanoscale Inhomogeneity
- IV. Inherent Structures
 - A. Potential Barrier Model
 - B. Stillinger-Weber Inherent Structure Theory
 - 1. Steepest Descent Quenches
 - 2. Cell Partition Function
 - 3. Structural Transitions
 - 4. Supercooled State
 - C. Applications
 - 1. Generalization of the Adam-Gibbs Model
 - 2. Generalization of the Gibbs-DiMarzio Model
 - 3. Stokes-Einstein Relation: Zwanzig-Mohanty Model
 - 4. Stress Relaxation

Advances in Chemical Physics, Volume LXXXIX, Edited by I. Prigogine and Stuart A. Rice. ISBN 0-471-05157-8 © 1995 John Wiley & Sons, Inc.

- 5. Interbasin Dynamics
- V. Models for Diffusion, Viscosity, and Dielectric Relaxation
 - A. Diffusion in Rough Potentials
 - B. Diffusion Past Entropic Barriers
 - 1. Diffusion in Periodic Potentials
 - 2. Diffusion in a Hyperboloidal Tube
 - C. Normal Model Analysis
 - D. Models for Self-Diffusion
 - 1. Damped Harmonic Picture
 - 2. Disorder Models
 - E. Validity of Debye-Stokes-Einstein Relations
 - F. Dielectric Relaxation

Acknowledgments

TERNARY SYSTEMS CONTAINING SURFACTANTS

MOHAMED LARADJI, HONG GUO, MARTIN GRANT, AND MARTIN J. ZUCKERMANN

Centre for the Physics of Materials and Physics Department, Ernest Rutherford Building, McGill University, Montréal, Québec, Canada H3A 2T8

- I. Introduction
 - A. Microemulsions
 - B. Spontaneous Curvature
 - C. Liquid Crystal Phases
 - D. Interfacial Behavior
 - E. Binary Mixtures of Water and Surfactants
- II. Lattice Models for Binary and Ternary Mixtures Containing Surfactants
 - A. Introduction
 - B. Model and Numerical Methods
 - 1. Model
 - 2. Numerical Methods
 - C. Monte Carlo Phase Diagrams
 - 1. Phase Diagram for Ternary Mixtures
 - 2. Phase Diagram for Binary Mixtures
 - D. Mean-Field Theory
 - 1. Phase Diagram
 - 2. Structure of the Disordered Phase
 - E. Conclusion
- III. Ginzburg-Landau Models
 - A. Introduction
 - B. The Model
 - C. Mean-Field Analysis
 - 1. Phase Diagram
 - D. Structure Factor
 - E. Effect of Fluctuations
 - 1. Solution of the Langevin Equations

Advances in Chemical Physics, Volume LXXXIX, Edited by I. Prigogine and Stuart A. Rice. ISBN 0-471-05157-8 © 1995 John Wiley & Sons, Inc.

- 2. Stability of the Lamellar Phase
- F. Interfacial Behavior along the Triple Line
- G. Conclusion
- IV. Dynamics of a Model of a Disordered Microemulsion
 - A. Introduction
 - B. A Model for Microphase Separation
 - C. Interface Theory for Microphase Separation
- V. Summary

Acknowledgments

		•

COLORED NOISE IN DYNAMICAL SYSTEMS

PETER HÄNGGI AND PETER JUNG

Department of Physics, University of Augsburg, Memminger Str. 6, D-86135 Augsburg, Germany

- I. Introduction
- II. Use and Abuse of Colored Noise
 - A. The Role of White Noise
 - B. The Role of Colored Noise
- III. Colored Noise Theory
 - A. Characterization of Colored Noise
 - B. Time Evolution of Non-Markovian Processes
 - C. Correlation Formulas between Noise Functionals
 - D. The Colored Noise Master Equation
 - E. Master Equation for a Linear Process Driven by Gaussian Colored Noise
- IV. Colored Two-State Noise
 - A. Correlated Two-State Noise
 - B. Master Equation for Colored Two-State Noise Driven Nonlinear Flows
 - C. Mean First-Passage Times
- V. Colored Noise Theory: Approximation Schemes
 - A. Small Correlation Time Expansion
 - B. Decoupling Approximation
 - C. Unified Colored Noise Approximation
 - 1. UCNA for Colored One-Dimensional Flows
 - D. Remarks on Sundry Colored Noise Approximation Schemes
- VI. Colored Noise Driven Bistable Systems
 - A. Embedding in a Two-Dimensional Markovian Process
 - 1. Basic Properties of the Embedding Fokker-Planck Operator
 - 2. Application of the Matrix Continued Fraction Technique
 - 3. Stationary Probability Density in the Extended Phase Space
 - 4. Eigenvalues and Eigenfunctions
 - B. Stationary Probability Density
 - C. Colored Noise Induced Escape Rates and Mean First-Passage Times
 - 1. Escape Rates for Weakly Colored Noise
 - 2. Escape Rates for Strongly Colored Noise
 - 3. Mean First-Passage Times for Other Boundary Conditions

Advances in Chemical Physics, Volume LXXXIX, Edited by I. Prigogine and Stuart A. Rice. ISBN 0-471-05157-8 © 1995 John Wiley & Sons, Inc.

- D. Colored Noise Driven Systems with Inertia
 - 1. Small Correlation Time Approximation
 - 2. Unified Colored Noise Approximation
 - 3. Decoupling Approximation
- VII. Multiplicative Colored Noise and Photon Statistics of Dye Lasers
 - A. The White Noise Limit
 - B. The Stationary Probability with Colored Noise
- VIII. Summary and Outlook

FORMULATION OF OSCILLATORY REACTION MECHANISMS BY DEDUCTION FROM EXPERIMENTS

JANET D. STEMWEDEL AND JOHN ROSS

Department of Chemistry, Stanford University, Stanford, CA 94305, USA

IGOR SCHREIBER

Department of Chemical Engineering, Prague Institute of Chemical Technology, Technicka 5, 166 28 Prague 6, Czech Republic

CONTENTS

- I. Introduction
- II. Concepts and Theoretical Constructs for Oscillatory Reactions
 - A. Jacobian Matrix Elements
 - B. Bifurcation Analysis
 - C. Categorization of Oscillatory Reactions
- III. Experiments
 - A. Characterization of Oscillations of Chemical Species
 - B. Amplitude Relations
 - C. Phase Relations
 - D. Concentration Shift Regulation
 - E. Concentration Shift Destabilization
 - F. Qualitative Pulsed Species Response
 - G. Quantitative Pulsed Species Response
 - H. Delay Experiments
 - I. Quenching
 - J. Phase Response Experiments
 - K. External Periodic Perturbation
 - L. Bifurcation Analysis
 - M. Stabilization of the Unstable Branch of Steady States
- IV. Example of Deduction of Reaction Mechanism from Experiments

References and Notes

Acknowledgments

Advances in Chemical Physics, Volume LXXXIX, Edited by I. Prigogine and Stuart A. Rice. ISBN 0-471-05157-8 © 1995 John Wiley & Sons, Inc.