CONTENTS

THEORY OF THE DYNAMIC SUSCEPTIBILITY OF MAGNETIC FLUIDS	1
By M. I. Shliomis and V. I. Stepanov	
A SEMICLASSICAL THEORY OF DIELECTRIC RELAXATION AND ABSORPTION: MEMORY FUNCTION APPROACH TO EXTENDED ROTATIONAL DIFFUSION MODELS OF MOLECULAR REORIENTATIONS IN FLUIDS	31
By Yuri P. Kalmykov and Sergei V. Titov	
THE COMPLEX SUSCEPTIBILITY OF A LIBRATING DIPOLE AN AXIALLY SYMMETRIC POTENTIAL WELL	125
By Vladimir I. Gaiduk and Boris M. Tseitlin	
STRUCTURE AND STRUCTURE-SENSITIVE PROPERTIES OF AQUEOUS SOLUTIONS OF ELECTROLYTES AND NONELECTROLYTES	379
By A. K. Lyashchenko	
Far-Infrared and Low-Frequency Raman Spectra of Condensed Media	427
By Tatiana S. Perova	
MILLIMETER ABSORPTION SPECTROSCOPY OF AQUEOUS SYSTEMS	483
By Yuri I. Khurgin, Valentina A. Kudryashova, Vladimir A. Zavizion, and Oleg V. Betskii	
RELAXATION PHENOMENA OF MAGNETIC EXCITATIONS IN FERROMAGNETIC MEDIA	545
By S. A. Nikitov	
THE EFFECTIVE FIELD METHOD IN THE ORIENTATIONAL KINETICS OF MAGNETIC FLUIDS AND LIQUID CRYSTALS	595
By Yuri L. Raĭkher and Mark I. Shliomis	
AUTHOR INDEX	753
Subject Index	763

THEORY OF THE DYNAMIC SUSCEPTIBILITY OF MAGNETIC FLUIDS

M.I. SHLIOMIS and V.I. STEPANOV

Institute of Continuous Media Mechanics, Urals Branch of the Russian Academy of Sciences, Perm, Russia

CONTENTS

List of Major Symbols for Physical Quantities

- I. Introduction
- II. General Fokker-Planck Equation
- III. Susceptibility of Monodisperse Ferrocolloids
- IV. Susceptibility of Polydisperse Colloids
- V. Conclusion

Relaxation Phenomena in Condensed Matter, Edited by William Coffey. Advances in Chemical Physics Series, Vol. LXXXVII.

A SEMICLASSICAL THEORY O DIELECTRIC RELAXATION AN ABSORPTION: MEMORY FUNCTI APPROACH TO EXTENDED ROTATI DIFFUSION MODELS OF MOLECU REORIENTATIONS IN FLUIDS

L

YURI P. KALMYKOV and SERGEI V. TITOV

Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Fryazino, Moscow Region, Russia

CONTENTS

List of Major Symbols

- I. Introduction
- II. Memory Function Approach: Fundamental Relations
- III. Extended Rotational Diffusion Models
 - A. Collision Mechanisms
 - B. General Equations
 - 1. Semiclassical Extended Rotational Diffusion Models
 - 2. Quantum Dipole Autocorrelation Functions of a Molecule: The Free Rotational Model
 - 3. Quantum Magnetic Dipole Moment Autocorrelation Function of Molecular Oxygen for the Free Rotational Model
- IV. Spectral Line Shapes for Extended Rotational Diffusion Models
- V. Finite Time of Molecular Collisions
- VI. Application of the Theory to the Calculation of Spectra
 - A. Molecular Oxygen
 - B. The Solutions HCl-SF₆ and DCl-SF₆
 - C. Water Vapor

Relaxation Phenomena in Condensed Matter, Edited by William Coffey. Advances in Chemical Physics Series, Vol. LXXXVII.

ISBN 0-471-30312-7 © 1994 John Wiley & Sons, Inc.

VII. Conclusions

Appendixes

- A. The Autocorrelation Function Method
- B. Sum Rules and Spectral Moments
- C. The Kinetic Equation Method
- D. Solution of the Kinetic Equation for a Semiclassical Analog of the J-Diffusion Model
- E. Proof of Gordon's Sum Rule for the J-Diffusion Model
- F. Correspondence Between the Classical and Semiclassical Results
- G. Comparison of the Semiclassical J-Diffusion Model and Gordon's Theory
- H. Method of Calculation of the Energy Levels and Line Intensities of a Semirigid Asymmetric Rotor

Acknowledgments

<u>10</u>

THE COMPLEX SUSCEPTIBILITY OF A LIBRATING DIPOLE IN AN AXIALLY SYMMETRIC POTENTIAL WELL

VLADIMIR I. GAIDUK and BORIS M. TSEITLIN

Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Fryazino, Moscow Region, Russia

CONTENTS

List of Conventional Symbols

I. Problem: Analytical Models of Orientational Relaxation in the Strong Collision Approximation

Part 1. Dynamic Method

- II. Propagation Constant and Effective Dielectric Susceptibility as an Average of the Complex Power Integral $\int Q dt$
 - A. Maxwell's Equations for a Medium with Molecular Currents:

 The Dispersion Equation
 - B. Averaging of a Complex Power over an Ensemble Using the t_0 Theorem
 - C. Steady State and Induced Distributions in Phase Space
 - D. Effective Susceptibility χ* of a Polar Medium in Terms of the Propagation Constant
- III. Spectrum of the Undamped Rotational Motion
 - A. The Susceptibility $\chi_{\rm B}^*$ and Spectral Function L(z)
 - B. Representation of the Spectral Function L(z) in Terms of the Undamped Motion
 - C. Relation Between the Spectral Function and the Undamped Autocorrelation Function
 - D. Dependence of L(z) and χ_B^* on the Direction of the Applied External Field: Transverse and Longitudinal Susceptibilities
 - E. L(z) Representation Using the Fourier Amplitudes of the Undamped Periodic Motion

Relaxation Phenomena in Condensed Matter, Edited by William Coffey. Advances in Chemical Physics Series, Vol. LXXXVII.

ISBN 0-471-30312-7 © 1994 John Wiley & Sons, Inc.

- F. A Macroscopic Isotropic Medium Considered as a Set of Locally Anisotropic Ensembles
- G. Integrated Absorption (Gordon's Sum Rule)
- H. Transition to the Limit $\tau \to \infty$ (Landau Damping)
- IV. Models of Collisions and Effect of the Brownian Rotation on Dielectric Relaxation
 - A. Effective Susceptibility χ* for Non-Equilibrium-Induced Distributions
 - B. Collision Models
 - C. The Debye Relaxation Mechanism as a Low-Frequency Approximation of the Effective Susceptibility $\chi(\omega)$
 - D. The Relaxation Time τ_D and the Maximum Debye Loss χ_D'' as Functions of Statistical Averages
 - E. A Discussion of Collision Models
 - F. The Relation Between Complex Permittivity and Effective Susceptibility (Internal Field Correction)
 - V. Generalizations of the Theory
 - A. Generalized Spectral Function K(z)
 - B. Dielectric Response to an Elliptically Polarized Planar Electromagnetic Wave
 - C. The Dielectric Susceptibility Tensor as the Response of a Polar Medium to a Transverse Electromagnetic Wave

Part 2. Molecular Models

- VI. Uniform and Lumped Uniform Potentials of Interparticle Interaction
 - A. Free Rotation Between Strong Collisions: the Extended Rotational Diffusion (ED) Model of Symmetric Top Molecules
 - B. The Cone-Confined Rotator (CCR) Model
 - C. The Confined Rotator (CR) Model
- VII. Behavior of the Librating Dipole in Single- and Double-Potential Wells (cos 9 and cos² 9 Profiles)
 - A. The Elastic Bond Model: Single-Well Potential
 - B. The Elastic Bond Model: Double-Well Potential
 - C. cos² 9 and cos 9 Potential Wells: Rigorous Theory
 - D. Mean Values of Molecular Dynamics Parameters
 - E. Spectral Functions of the L- and R-Subensembles
 - F. Field Models in the Long-Lifetime Limit
 - G. The Quasi-Elastic Bond Model
 - H. Stratified Potential Well Approach to the Field Models with Cosine and Cosine Squared Potentials
- VIII. The Ion-Dipole System
 - IX. Extension of the Theory to Multicomponent Systems
 - A. Systems Possessing a Discrete Set of Relaxation Times
 - B. A System with a Single Relaxation Time (a Microscopic Homogeneous System)

Part 3. Applications of the Theory

- X. Dielectric Relaxation and Molecular Dynamics in Nonassociated Liquids
 - A. Summary of the Theoretical Descriptions of Self-Consistent Collision Models

- B. Dielectric Spectra of Strongly Absorbing Liquids
- C. Libration Amplitude β and Frequency v_L of the Maximum Absorption
- D. Angular Paths θ_L , θ_R , Lifetime τ , and Barrier Height U_0
- E. Self-Diffusion Coefficient D, Barrier U_0 , and Path Lengths l: Correlation Between Rotational and Translational Motion
- F. Libration Amplitude and Lifetime τ in Light of the Debye Theory of Rotational Diffusion
- G. The Dipole ACFs $\Phi(t)$ and $\dot{\Phi}(t)$

XI. Conclusion

- A. Theoretical Foundations and Calculation Procedure
- B. Comparison of Molecular Models
- C. Applicability of the Theory to Individual Liquids
- D. Physical Picture of Orientational Relaxation
- E. Problems to Be Solved

Appendixes

- A. The t_0 Theorem
- B. The Average Perturbation (AP) Theorem
- C. Physical Significance of the Variables l and m

Acknowledgments

STRUCTURE AND STRUCTURE-SENSITIVE PROPERTIES OF AQUEOUS SOLUTIONS OF ELECTROLYTES AND NONELECTROLYTES

A. K. LYASHCHENKO

N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Russia

CONTENTS

- I. I, V, D, Structures of Water and Solutions
- II. Structure-Geometric Method for Analysis of Solution Structure
- III. Aqueous Solutions of Nonelectrolytes and Weak Electrolytes
 - A. Geometric Model of Solution Structure
 - B. Volumetric Properties of Solutions with Hydrophilic Hydration of Molecules on the Basis of the Structural Model
 - C. Structure-Making and Structure-Breaking Effects of Hydrophilic and Hydrophobic Hydrations
 - D. Dielectric Relaxation of Aqueous Solutions of Polar Molecules
- IV. Structure of Electrolyte Aqueous Solutions
 - A. Geometric Model of Solution Structure
- B. Transformation from Water-Electrolyte to Electrolyte-Water Solvent References

FAR-INFRARED AND LOW-FREQUENCY RAMAN SPECTRA OF CONDENSED MEDIA

TATIANA S. PEROVA

Department of Photophysics, Vavilov State Optical Institute, St.-Petersburg, Russia

CONTENTS

- I. Rotational and Translational Molecular Motions in the Low-Frequency Vibrational Spectra of Liquids'
 - A. Introduction
 - B. A Lattice-like Model for Calculation of Frequency of Maximum Absorption
 - C. Far-Infrared Spectra of Some Nitro Compounds
 - D. Temperature and Isotopic Substitution Behavior of Spectra
 - E. Comparison of Far-Infrared and Low-Frequency Raman Spectra
 - F. Solution Behavior of Spectra
 - G. Distinctive Features of the Spectrum of Superviscous Liquids
- II. Low-Frequency Vibrational Spectra of Liquid Crystals
 - A. Introduction
 - B. Far-Infrared Spectra of Liquid Crystal Compounds
 - C. Polarized Far-Infrared Spectra of Nematic Liquid Crystals
 - D. The Dichroic Ratio
 - E. Depolarized Rayleigh Wing Scattering in Some Nematic and Lyotropic Liquid Crystals Acknowledgments

Relaxation Phenomena in Condensed Matter, Edited by William Coffey. Advances in Chemical Physics Series, Vol. LXXXVII.

MILLIMETER ABSORPTION SPECTROSCOPY OF AQUEOUS SYSTEMS

YURI I. KHURGIN

Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia

and

VALENTINA A. KUDRYASHOVA, VLADIMIR A. ZAVIZION, and OLEG V. BETSKII

Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Fryazino, Moscow Region, Russia

CONTENTS

- I. Introduction
- II. Experimental Techniques
- III. Water and Its Interaction with Millimeter Radiation
- IV. Aqueous Solutions of Strong Electrolytes
 - A. General Aspects of Ion Hydration
 - B. Rotational Mobility of Water Molecules and Hydration of Ions
 - C. Absorption Nonadditivity for Aqueous Salt Solutions and Ion Hydration
 - D. Absorption Deficiency as an Indicator of Hydration
 - E. The Influence of Ion-Ion Interaction on Millimeter Radiation Absorption
 - F. Frequency Dependence of Absorption
- V. Dipolar Ions: Amino Acids
 - A. General Aspects of Amino Acid Hydration

Relaxation Phenomena in Condensed Matter, Edited by William Coffey. Advances in Chemical Physics Series, Vol. LXXXVII.

ISBN 0-471-30312-7 © 1994 John Wiley & Sons, Inc.

- B. Positive and Negative Hydration Phenomena in Aqueous Amino Acid Solutions
- C. The Influence of Amino Acid Structure on Hydration
- VI. Aprotic Dipolar Solvents in Aqueous Systems: Dimethyl Sulfoxide
 - A. The Phenomenology of Intermolecular Interactions in Aqueous Polar Nonelectrolyte Solutions
 - B. The Lambert-Beer Behavior of Dilute and Concentrated Aqueous Nonelectrolytes
 - C. The Dimethyl Sulfoxide-Water System: Nonadditivity Effects and Absorption Deficit
 - D. The Problem of Hydration Numbers of the DMSO Molecules in Dilute Solution
 - E. Intermolecular Events in DMSO-Rich Solutions
 - F. Suggested Model of DMSO-Water Interactions
- VII. Millimeter Spectroscopy of Aqueous Alcohols
 - A. Aqueous Solution of Ethanol and t-Butanol
 - B. Aqueous Solution of the Aliphatic Alcohol Series
 - C. Hydration Effects in Polyhydroxide Compounds
- VIII. Negative Hydration of Nonelectrolytes: The Ureas
 - A. Negative Hydration of Urea: Inhomogeneity of the Hydration Shell
 - B. Millimeter Spectroscopy and Other Experimental Data: Quantum Chemical and Molecular Dynamics Calculations on Urea-Water Systems
 - C. Water Structure Breaking by Molecular Fragments of Urea and Its Alkyl Derivatives IX. Conclusion

RELAXATION PHENOMENA OF MAGNETIC EXCITATIONS IN FERROMAGNETIC MEDIA

S. A. NIKITOV

Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow Region, Russia

CONTENTS

List of Symbols

Part 1. Introduction: Dissipation of Energy of Magnetic Excitations in Magnetic Crystals Part 2. General Discussion

- I. Relaxation Phenomena of Spin Waves in Infinite Magnetic Media
 - A. Spin-Spin Relaxation
 - 1. Two-Magnon Processes of Relaxation
 - 2. Many-Magnon Processes of Relaxation
 - B. Spin-Lattice Relaxation
 - C. Ion Relaxation
- II. Relaxation Phenomena of Spin Waves in Thin Ferromagnetic Films
 - A. Spectra of Spin Waves in Ferromagnetic Films
 - B. Magnon-Magnon Relaxation: Three- and Four-Magnon Processes
 - C. Magnon-Phonon Relaxation
 - D. Two-Magnon Relaxation of Magnetostatic Waves
 - 1. Dissipation of Energy Due to the Scattering at the Surface Roughness
 - 2. Two-Magnon Relaxation of Magnetostatic Waves Due to the Scattering from the Defects of a Ferromagnet
 - 3. Direct Two-Magnon Relaxation of Magnetostatic Waves in Thin Ferromagnetic Films
 - 4. Two-Particle Relaxation of Magnetostatic Waves in Layered Magnetic Structures
 - E. Relaxation of Magnetostatic Waves in a Ferromagnetic Film with a Thin Metal Layer on Its Surface
 - 1. Magnetostatic Waves in a Ferromagnetic Film Covered by a Uniform Metal Layer with Finite Conductivity

Relaxation Phenomena in Condensed Matter, Edited by William Coffey. Advances in Chemical Physics Series, Vol. LXXXVII.

ISBN 0-471-30312-7 © 1994 John Wiley & Sons, Inc.

- 2. Magnetostatic Wave Reflection from a Periodic System of Metal or Semiconductor Strips at the Surface of a Ferromagnetic Film
- F. Experimental Investigations of Relaxation of Spin Waves in Ferromagnetic Films

III. Conclusions

THE EFFECTIVE FIELD METHOD IN THE ORIENTATIONAL KINETICS OF MAGNETIC FLUIDS AND LIQUID CRYSTALS

YURI L. RAĬKHER and MARK I. SHLIOMIS

Institute of Continuous Media Mechanics, Urals Branch of the Russian Academy of Sciences, Perm, Russia

CONTENTS

List of Major Symbols Part 1. Introduction

Part 2. General Discussion

- I. Magnetic Fluid: Rigid Dipole Model
 - A. Magnetic Properties of Fine Ferroparticles
 - B. Reference Time Scales
 - C. The Rigid Dipole Model: Rotary Diffusion Equation for the Magnetic Moment
 - D. Spectrum of Decrements in the External Field
 - E. The Effective Field Method and Equation of Motion of the Magnetization
 - F. The Linearized Equation of Magnetization Motion: Relaxation Times
 - G. Dynamic Magnetic Susceptibility
 - H. Magnetic Birefringence
- II. Hydrodynamic Properties of a Suspension of Rigid Dipoles
 - A. The Stress Tensor and Equation of Motion of a Magnetic Fluid
 - B. The Equation for Magnetization of a Moving Suspension
- III. Magnetic Fluid of Particles with Finite Anisotropy
 - A. Magnetic Moment Motion Inside the Particle: Orientational Diffusion Equation
 - B. Spectrum of Decrements: Complex Eigenvalues
 - C. Magnetic Resonance in the Uniaxial Anisotropy Field
 - D. Magnetic Resonance in the External Field. I. An Isotropic Superparamagnet
 - E. Magnetic Resonance in the External Field. II. An Anisotropic Superparamagnet
 - F. Birefringence Dynamics: Particles with Finite Anisotropy

Relaxation Phenomena in Condensed Matter, Edited by William Coffey. Advances in Chemical Physics Series, Vol. LXXXVII.

ISBN 0-471-30312-7 © 1994 John Wiley & Sons, Inc.

- IV. Orientational Kinetics of Liquid Crystals and Orientable Polymers
 - A. Remarks on the Orientational Properties of Solid Polymers
 - B. Mean Field Approximation for Orientable Systems: The Maier-Saupe Model
 - C. Orientational Diffusion of Structural Units
 - D. Relaxation Times of the Orientation Tensor: Evaluation by the Effective Field Method
 - E. Anomalies in the Elasticity of a Polymer in the Vicinity of the Orientational Phase Transition Point
 - F. Elastic Waves in a Polymer
 - V. Conclusion

Appendix: Some Properties of the Function $R(\sigma)$

Acknowledgments

^{*}Symbols are listed for physical quantities in the order in which they appear in the text.