		
		:

CONTENTS

1
51
89
127
159
217
249
307
375

XII CONTENTS

PHOTON STATISTICS OF NONCLASSICAL FIELDS	405
By Jan Peřina, Jiří Bajer, Vlasta Peřinová, and Zdeněk Hradil	
Quantum Resonance Fluorescence from Mutually Correlated Atoms	461
By Z. Ficek and R. Tanaś	
Squeezed States of Light in the Second and Third Harmonic Generated by Self-squeezed Light	497
By S. Kielich and K. Piątek	
Self-squeezing of Elliptically Polarized Light Propagating in a Kerr-like Optically Active Medium	541
By S. Kielich, R. Tanaś, and R. Zawodny	
Author Index	595
Subject Index	613

RELAXATION THEORY OF NONLINEAR PROCESSES IN THE SMOLUCHOWSKI ROTATIONAL DIFFUSION **APPROXIMATION**

WŁADYSŁAW ALEXIEWICZ AND BOLESŁAWA KASPROWICZ-KIELICH

Nonlinear Optics Department, Institute of Physics, Adam Mickiewicz University, Poznań, Poland

CONTENTS

- Introduction
- Dispersion and Absorption of Molecular Nonlinear Polarizabilities in the Approach of II. Classical Electron Theory
- The Relaxation Functions Within the Debye-Smoluchowski Model of Molecular III. Rotational Diffusion
- Third-Order Electric Polarization in Liquids
- Applications of the Smoluchowski Rotational Diffusion Approximation in the Relaxation Theory of Nonlinear Electro-optical Processes
 - A. Phenomena Related to Nonlinear Electric Polarization in Liquids
 - Dispersion and Absorption in Some Nonlinear Electro-optical Effects
 - 1. Dispersion and Absorption of the Change in Nonlinear Electric Polarizability $C(-\omega; \omega, 0, 0)$ Due to an Intense Dc Electric Field: Nonlinear Dielectric Effect
 - 2. Frequency Doubling in the Presence of a Dc Electric Field
 - Nonlinear Polarizability $C(0; \omega, -\omega, 0)$: The Effect of Nonlinear Dielectric Rectification in the Presence of a Dc Electric Field
 - 4. Dispersion and Absorption of Self-induced Variations in the Nonlinear Polarizability $C(-\omega; \omega, \omega, -\omega)$
 - 5. Dispersion and Absorption of the Nonlinear Polarizability $C(-3\omega; \omega, \omega, \omega)$ in the Process of Third-Harmonic Generation at Dielectric Frequencies

This work was carried out within the framework of Project PB 2 0130 9101 of the State Committee for Scientific Research.

Modern Nonlinear Optics, Part 1, Edited by Myron Evans and Stanisław Kielich. Advances in Chemical Physics Series, Vol. LXXXV.

ISBN 0-471-57546-1 © 1993 John Wiley & Sons, Inc.

2 WŁADYSŁAW ALEXIEWICZ AND BOLESŁAWA KASPROWICZ-KIELICH

- C. Time Dependence of Nonlinear Dielectric Relaxation in Selected Electro-optical Phenomena in Liquids
 - 1. The Dynamics of the Nonlinear Dielectric Effect
 - 2. The Dynamics of Dc Field-Induced Electric Rectification
 - 3. The Dynamics of Optical Rectification induced by Gaussian Electric Field Pulses
 - 4. The Influence of Molecular Rotational Diffusion on Gaussian Pulse-Induced Third-Order Electric Polarization in Liquids
- D. The Process of Decay of Nonlinear Electric Polarization References

SPECTRAL ANALYSIS OF LIGHT SCATTERED BY MONODISPERSE SOLUTIONS OF RIGID, ANISOTROPIC MACROMOLECULES IN A REORIENTING AC ELECTRIC FIELD

M. DĘBSKA-KOTŁOWSKA AND A. MIRANOWICZ

Nonlinear Optics Division, Institute of Physics, Adam Mickiewicz University, Poznań, Poland

CONTENTS

- I. Introduction
- II. Theory
- III. Discussion and Conclusions

Appendix

HYPER-RAYLEIGH AND HYPER-RAMAN ROTATIONAL AND VIBRATIONAL SPECTROSCOPY

T. BANCEWICZ AND Z. OŻGO

Nonlinear Optics Division, Institute of Physics, Adam Mickiewicz University, Poznań, Poland

CONTENTS

- I. Introduction
- II. Multiharmonic Scattering
 - A. Second-Harmonic Scattering
 - B. Third-Harmonic Scattering
 - C. Rotational Structure of Hyper-Rayleigh Scattering
- III. Interaction-Induced Contributions to Hyper-Rayleigh and Hyper-Raman Scattering
 - A. Influence of Interaction-Induced Contributions on the Spectral Shape and Integral Intensity of Scattered Light
 - B. Analytical Expressions for $\Delta \alpha^{2\omega}$ and $\Delta \beta^{2\omega}$
- IV. Conclusion

POLARIZATION PROPERTIES OF HYPER-RAYLEIGH AND HYPER-RAMAN SCATTERINGS

M. KOZIEROWSKI

Nonlinear Optics Division, Institute of Physics, Adam Mickiewicz University, Poznań, Poland

CONTENTS

- I. Introduction
- II. Scattered Light Intensity Tensor
- III. Permutation Symmetry of the Polarizability Tensors
- IV. General Remarks on the Polarization Properties of Light
 - V. Stokes Parameters for the Scattered Light
- VI. Differential Scattering of Elliptically Polarized Light and Rotation of the Azimuth
- VII. Quantum-Mechanical Form of the Hyper-Rayleigh Scattering Tensor
- VIII. Symmetric-Unsymmetric Scattering of Linearly and Circularly Polarized and Natural Light
 - IX. Unsymmetric Scattering References

FAST MOLECULAR REORIENTATION IN LIQUID CRYSTALS PROBED BY NONLINEAR OPTICS

J. R. LALANNE

CNRS Paul Pascal, Pessac, France

I BUCHERT

IUSL City of College of New York, New York, New York

S. KIELICH

Nonlinear Optics Department, Adam Mickiewicz University, Poznań, Poland

CONTENTS

- I. Introduction
- II. General Considerations
 - A. Third-Order Interaction Between a Laser Field $E(\mathbf{r}, t)$ and Matter (Assumed to Be Macroscopically Isotropic)
 - B. Comparison Between the Electronic and Orientational Contributions
 - C. Definition of the First-Order Polarizability Anisotropy γ
 - D. The Link Between Nonlinear Optical Properties Described by $\chi_{(1)ani}^{(3)}$ and Those Probed by Depolarized Rayleigh Scattering (DRS)
 - E. Relation Between Various Relaxation Times
- III. Nonlinear Optical Techniques Used for the Study of Fast Molecular Relaxations in Liquid Crystals
 - A. Optical Kerr Effect
 - B. Induced Transient Grating
 - C. Degenerate Four-Wave Mixing
- IV. The Liquid Crystals and Their Preparation
 - A. Structure of the Phases
 - B. The Compounds Studied

Modern Nonlinear Optics, Part 1, Edited by Myron Evans and Stanisław Kielich. Advances in Chemical Physics Series, Vol. LXXXV.

ISBN 0-471-57546-1 © 1993 John Wiley & Sons, Inc.

- C. Sample Preparation
- D. Control of the Optical Quality of the Samples
- V. Experiments and Results
 - A. OKE Investigations
 - 1. Studies of Slow Responses to Picosecond Pulses [12]
 - a. Methods and Materials
 - b. Results
 - 2. Studies of Fast Responses in OKE Investigations [14, 15]
 - a. Methods and Materials
 - b. Results
 - B. ITG Investigations
 - 1. Isotropic Phases
 - 2. Nematic Phases
 - 3. Smectic-A Phases
 - C. DFWM Investigations [95, 96]
 - 1. Isotropic and Nematic Phases
 - 2. Smectic A Homeotropic Phases
- VI. General Conclusions and Prospects

NONLINEAR PROPAGATION OF LASER LIGHT OF DIFFERENT POLARIZATIONS

GENEVIEVE RIVOIRE

Laboratoire des Propriétés Optiques des Matériaux et Applications, Université d'Angers, Angers, France

CONTENTS

			_	20	
T	T	4		ıcti	
	- 117	TTO		1CTI	ΛN
13 8523	0.00				

- II. Propagation of One Wave in a Nonlinear Medium
 - A. Experiments
 - B. Equations: Third-Order Nonlinear Susceptibility Tensor
 - C. Polarization Eigenstates
 - D. Determination of the Susceptibility Tensor Components by Means of Measurements Using a Single Polarized Beam
 - 1. Ellipsometry Measurements
 - 2. Refraction Index Measurements
 - a. Self-focusing Threshold Method (SFT)
 - b. Z-scan Method
 - c. Nonlinear Imaging Method
 - 3. Conclusions
 - E. Influence of Linear Absorption and Optical Activity
 - F. Applications
- III. Propagation of Two Waves
 - A. Equations: Polarization Eigenstates
 - B. Propagation of a Signal Wave in the Presence of a Pump Wave
 - Polarization State of the Probe Wave: Experimental Results
 - 2. Refraction Index of the Signal Wave
 - C. Propagation of Two Intense Waves
 - D. Conclusions
- IV. Propagation of Three Incident Waves: Four-Wave Mixing
 - A. Propagation Equations and Susceptibility Tensor in Four-Wave Mixing
 - B. Measurements of the Susceptibility Tensor Components
 - C. Polarization Wavefront Conjugation
- V. Conclusion
 - A. Polarization Eigenstates
 - B. Third-Order Nonlinear Susceptibility Components

References

Modern Nonlinear Optics, Part 1, Edited by Myron Evans and Stanisław Kielich. Advances in Chemical Physics Series, Vol. LXXXV.

ISBN 0-471-57546-1 © 1993 John Wiley & Sons, Inc.

SELF-ORGANIZED NONLINEAR OPTICAL PHENOMENA IN OPTICAL FIBERS

PAVEL CHMELA

Faculty of Mechanical Engineering, Technical University, Brno, Czech Republic

CONTENTS

- I. Introduction
- II. Some Basic Experiments
 - A. Self-Seeding Second-Harmonic Generation
 - B. Second-Harmonic Generation with External Seeding
 - C. Sum-Frequency and Difference-Frequency Generation
 - D. Second-Harmonic Generation in Fiber Preform
 - E. Preparation of Optical Fibers for Effective Second-Harmonic Generation by Poling Technique
 - F. Enhancement of Second-Harmonic Conversion Efficiency by Irradiation and Heating
 - G. Erasure Experiments
- III. Intrinsic Generation of Initial Second-Harmonic Seed
 - A. Electric-Quadrupole Interaction Model
 - B. Four-Wave Mixing Model
 - C. Second-Harmonic Generation from Quantum Noise Owing to Fifth-Order Nonlinearity
- IV. Formation of $\chi^{(2)}$ Grating
 - A. Excitation of Dopant Defects
 - B. The Simple Optical-Rectification Model
 - C. Rigorous Phenomenological Theory for Interaction of Monochromatic Radiation Modes
 - 1. Degenerate Two-Wave Interaction
 - 2. Nondegenerate Three-Wave Interaction
 - 3. Interaction of Radiation with an External DC Poling Field
- V. Quadratic Nonlinear Phenomena at Periodical $\chi^{(2)}$ Gratings
 - A. Resonant Second-Harmonic Generation
 - B. Nonresonant Second-Harmonic Generation

Modern Nonlinear Optics, Part 1, Edited by Myron Evans and Stanisław Kielich. Advances in Chemical Physics Series, Vol. LXXXV.

ISBN 0-471-57546-1 © 1993 John Wiley & Sons, Inc.

Dedicated to the 67th birthday of Professor Stanisław Kielich.

- C. Sum-Frequency Generation
- D. Difference-Frequency Generation
- VI. Generation of Bright Visible Spectra in Optical Fibers
- VII. Concluding Remarks

NONLINEAR MAGNETO-OPTICS OF MAGNETICALLY ORDERED CRYSTALS

R. ZAWODNY

Laboratory of Theoretical Physics, Joint Institute for Nuclear Research,

Dubna, Moscow, Russia

CONTENTS

- I. Introduction
 - A. Linear Magneto-optical Effects
 - B. Nonlinear Magneto-optical Effects
- II. Classical Magneto-optics in a Phenomenological Treatment
 - A. Linear and Nonlinear Electric and Magnetic Multipolar Susceptibilities
 - B. Permutational Symmetry for Linear and Nonlinear Multipolar Electric and Magnetic Susceptibilities
 - C. Time-reversal Symmetry for Linear and Nonlinear Multipolar Electric and Magnetic Susceptibilities
 - D. Neumann's Principle as a Selection Rule for Magneto-optics
- III. Stokes Parameters
- IV. Results
 - A. Rotation of the Polarization Ellipse of Light
 - B. Rotation of the Polarization Plane of Linearly Polarized Light
 - C. Elliptization of Linearly Polarized Light
- V. Conclusion

Appendix A

Appendix B

DYNAMICAL QUESTIONS IN QUANTUM OPTICS

ALEXANDER STANISLAW SHUMOVSKY

Joint Institute for Nuclear Research, N. N. Bogolubov Laboratory of Theoretical Physics, Quantum Optics Division,

Moscow, Russia

CONTENTS

- I. Introduction
- II. Physical Models
 - A. Dicke Model
 - B. Raman Scattering
 - C. Polariton-like System
 - D. High- T_c Superconductivity
- III. Exact Relations for Mixed Correlation Functions
- IV. Hierarchical Equation with Eliminated Bose Operators
- V. Markoffian Approximation
- VI. Weakening of Correlations
- VII. Raman Correlation Spectroscopy
- VIII. Conclusion

Appendix

PHOTON STATISTICS OF NONCLASSICAL FIELDS

JAN PEŘINA, JIŘÍ BAJER, VLASTA PEŘINOVÁ, AND ZDENĚK HRADIL

Laboratory of Quantum Optics and Department of Optics, Palacký University, Olomouc, Czechoslovakia

CONTENTS

- I. Introduction
- II. Generalized Superposition of Coherent Fields and Quantum Noise
 - A. Definitions
 - 1. Single-Mode Case
 - 2. Compound-Mode Case
 - B. Principal Squeezing
 - C. Oscillations in Photon-Number Distribution
- III. Relation Between Antibunching and Squeezing
- IV. Nonlinear Optical Processes
 - A. Gaussian Solutions (Classical Pumping and Linear Operator Corrections)
 - 1. Three- and Four-Wave Mixing
 - 2. Optical Phase Conjugation
 - 3. Stimulated Raman and Hyper-Raman Scattering
 - 4. Nth Subharmonic Generation
 - B. Non-Gaussian Solutions
 - 1. Anharmonic Oscillator
 - 2. Symbolic Computational Method
- V. Conclusions

QUANTUM RESONANCE FLUORESCENCE FROM MUTUALLY CORRELATED ATOMS

Z. FICEK

Department of Physics, The University of Queensland, Brisbane,

Australia

R. TANAŚ

Nonlinear Optics Division, Institute of Physics, Adam Mickiewicz University, Poznań, Poland

CONTENTS

- I. Introduction
- II. Master Equation
- III. Nonclassical States of Light
- IV. Single-Atom Resonance Fluorescence
- V. Multiatom Resonance Fluorescence
- VI. Squeezing in Two-Atom Spontaneous Emission
- VII. Summary References

SQUEEZED STATES OF LIGHT IN THE SECOND AND THIRD HARMONIC GENERATED BY SELF-SQUEEZED LIGHT

S. KIELICH AND K. PIĄTEK

Nonlinear Optics Division, Institute of Physics, Adam Mickiewicz University, Poznań, Poland

CONTENTS

- I. Introduction
- II. History and Perspectives
- III. Squeezed States of Light
 - A. Minimum Uncertainty States and Coherent States
 - B. Quadrature Operators
 - C. Squeezed States
 - D. Fundamental Properties of Squeezed States
 - E. Two-Mode Squeezing
- IV. Anharmonic Oscillator Model
- V. Self-squeezing of Light in Nonlinear Medium
 - A. Classical Treatment: Self-phase Modulation
 - B. Quantum Treatment: Self-squeezing
- VI. Second-Harmonic Generation by Self-squeezed Light in Nonlinear Medium
 - A. Second-Harmonic Generation: Classical Treatment
 - B. Squeezing in Second-Harmonic Generation
- VII. Third-Harmonic Generation by Self-squeezed Light in Nonlinear Medium
- VIII. Conclusion

SELF-SQUEEZING OF ELLIPTICALLY POLARIZED LIGHT PROPAGATING IN A KERR-LIKE OPTICALLY ACTIVE MEDIUM

S. KIELICH, R. TANAŚ, AND R. ZAWODNY

Nonlinear Optics Division, Institute of Physics, Adam Mickiewicz University, Poznań, Poland

CONTENTS

- I. Introduction
- II. The Effective Interaction Hamilton
- III. The Solution of the Equations of Motion for the Field Operators
- IV. Photon Statistics
- V. Squeezing
- VI. Conclusions

Appendix A

Appendix B