		57	
			### ### ### ### #### ################

CONTENTS

THE COLLISIONAL TIME-CORRELATION FUNCTION APPROACH TO MOLECULAR ENERGY TRANSFER	1
By David A. Micha and Eduardo F. Vilallonga	
Molecular Theory of Liquid-Phase Vibrational Energy Relaxation	73
By S. A. Adelman, R. Ravi, R. Muralidhar, and R. H. Stote	
Electron Degradation in Molecular Substances	193
By Mineo Kimura, Mitio Inokuti, and Michael A. Dillon	
Adiabatic and Quasidiabatic States in a Gauge Theoretical Framework	293
By T. Pacher, L. S. Cederbaum, and H. Köppel	
One-Dimensional Quantum Mechanical Problems with Complicated Potentials. The Propagator Method of Solution and Some Chemical Applications	393
By M. V. Basilevsky and V. M. Ryaboy	
Simulation of Nonlinear Electronic Spectroscopy in the Condensed Phase	435
By Laurence E. Fried and Shaul Mukamel	
AUTHOR INDEX	517
Subject Index	527

THE COLLISIONAL TIME-CORRELATION FUNCTION APPROACH TO MOLECULAR ENERGY TRANSFER

DAVID A. MICHA

Quantum Theory Project, Departments of Chemistry and of Physics, University of Florida, Gainesville, Florida

EDUARDO F. VILALLONGA

Chemistry Department, Princeton University, Princeton, New Jersey

CONTENTS

Abstract

- I. Introduction
- II. Time-Correlation Functions and Collisional Cross Sections
- III. Time-Correlation Functions and Thermal Collision Rates
- IV. Liouville Space Formulation of Collisional Time-Correlation Functions
- V. Wavepacket Formulation of Collisional Time-Correlation Functions
- VI. Cumulant Expansions for Short-Time Events
- VII. Transition Operators for Molecular Interaction Potentials
- VIII. The Separation of Time Scales in Correlation Functions
 - IX. The Multiple Scattering Expansion
 - X. The Impulsive Collision Regime
 - XI. Excitation of Harmonic Vibrations in the Impulsive Regime
- XII. Green Function Description of Anharmonic Vibrations in Collisions
- XIII. Short-Time Expansion of Correlation Functions for Rotational Excitations
- XIV. The Semiclassical Regime
- XV. Vibrational-Rotational Energy Transfer in the Semiclassical Regime
- XVI. Conclusion

Acknowledgments

Advances in Chemical Physics, Volume LXXXIV, Edited by I. Prigogine and Stuart A. Rice. ISBN 0-471-58726-5 © 1993 John Wiley & Sons, Inc.

MOLECULAR THEORY OF LIQUID-PHASE VIBRATIONAL ENERGY RELAXATION

S. A. ADELMAN and R. RAVI

Department of Chemistry, Purdue University, West Lafayette, Indiana

R. MURALIDHAR

Mobil Research and Development Corporation, Paulsboro, New Jersey

R. H. STOTE

Department of Chemistry, Harvard University, Cambridge, Massachusetts

CONTENTS

- I. Introduction
- II. Specification of the Liquid Solution
 - A. Specification of the Solvent and Solute
 - B. Phase-Space Coordinates of the Solvent
 - C. Phase-Space Coordinates of the Solute
 - D. Explicit and Implicit Solute Coordinates
 - E. Internal and External Solute Coordinates
 - F. The Mass Matrices
 - G. Suppression of the Influence of z_i , Fluctuations
 - H. Index Conventions
- III. The Rigid Solvent Model
 - A. The Pure Rigid Solvent
- IV. The Fixed Explicit Coordinate Solution
 - A. The Rigid Solvent Model
 - 1. Equilibrium Statistics
 - 2. Dynamics and Time Correlation Functions
 - B. Vibrating Solvent Fixed Explicit Coordinate Solution
 - V. The Fixed Solute Solution

Advances in Chemical Physics, Volume LXXXIV, Edited by I. Prigogine and Stuart A. Rice. ISBN 0-471-58726-5 © 1993 John Wiley & Sons, Inc.

- VI. An Equation of Motion for the Normal Mode Coordinate y
 - A. The Equation of Motion
- VII. Construction of the Equation of Motion: Preliminary Results
 - A. Factorization of $f_0[Q]$
 - B. The Force Balance Conditions
 - C. Neglect of Coriolis Interactions
- VIII. Construction of $F_{MIP}[y]$
 - A. Construction of $F_g[y] + \langle \mathcal{F} \rangle_0$
 - B. Construction of $\omega_c^2 = -\langle \partial \mathcal{F}/\partial y \rangle_0$
 - 1. Basic Result for $\langle \partial \mathcal{F}/\partial y \rangle_0$
 - 2. Expansion in Terms of Atomic Gradients
 - 3. Sitewise Additive Solute-Solvent Potentials
 - 4. Reduction of Ensemble Averages
 - IX. Gaussian Model Construction of $\langle \tilde{\mathcal{F}}(t)\tilde{\mathcal{F}}\rangle_0$
 - A. Evaluation of $\langle \tilde{\mathcal{F}}^2 \rangle_0$
 - 1. Evaluation of $\langle \mathcal{F}^2 \rangle_0$
 - 2. Evaluation of $\langle \mathcal{F} \rangle_0^2$
 - 3. Final Result for $\langle \tilde{\mathcal{F}}^2 \rangle_0$
 - B. Evaluation of $\langle \mathcal{F}^2 \rangle_0$
 - 1. Decomposition of $\langle \tilde{\mathcal{F}}^2 \rangle_0$
 - 2. Atomic Gradient Expansion of $\langle \tilde{\mathcal{F}}^2 \rangle_{0d,\iota(r)}$
 - 3. Evaluation of the Tensors
 - 4. Evaluation of $\langle \tilde{\mathcal{F}}^2 \rangle_{0d,\iota(r)}$
 - 5. Atomic Gradient Expansion of $\langle \tilde{\mathcal{F}}^2 \rangle_{0i,i(r)}$
 - 6. Final Form for $\langle \mathcal{F}^2 \rangle_{0i,i(r)}$
 - X. Superposition Approximations for the Site Densities
 - XI. Final Forms for $\langle \partial \mathcal{F}/\partial y \rangle_0$ and for $\langle \tilde{\mathcal{F}}(t)\tilde{\mathcal{F}} \rangle_0$
 - A. Preliminary Results
 - 1. Factorization of the Integrals
 - 2. Evaluation of Potential Gradients
 - B. Final Results for $\langle \partial \mathcal{F}/\partial y \rangle_0$ and $\langle \tilde{\mathcal{F}}(t)\tilde{\mathcal{F}} \rangle_0$
 - 1. Result for $\langle \partial \mathcal{F}/\partial y \rangle_0$
 - 2. Result for $\langle \mathcal{F}^2 \rangle_0$
 - 3. Result for $\langle \tilde{\mathcal{F}}^2 \rangle_0$
- XII. Specialization to Diatomic Solutes
 - A. Evaluation of the Tensors
 - B. Evaluation of ω_1^2
 - 1. Evaluation of ω_g^2 and ω_{cf}^2
 - 2. Evaluation of ω_{ϵ}^2
 - C. Gaussian Model Evaluation of $\langle \tilde{\mathcal{F}}(t)\tilde{\mathcal{F}}\rangle_0$
 - 1. Specialization of Results
 - 2. Evaluation of $\vec{e}_z \vec{e}_z 1 :: K_{iikl}$
- XIII. Summary of Diatomic Solution Results for the VTR Contribution to T_1
 - A. Preliminaries
 - 1. Solute and Solvent Masses
 - 2. Atomic Sites and Atomic Coordinates
 - 3. Vector Integrals
 - 4. Site-Site Potentials
 - 5. Ensemble Averaged Site Densities
 - 6. Site-Site Equilibrium Pair Correlation Functions

- 7. The Coordinates \vec{q}_1 and \vec{q}_2
- 8. The Body-Fixed Frame
- 9. Spherical Polar Representation for the Single-Vector Integrals
- 10. Spherical Polar Representations for the Double-Vector Integrals
- B. Diatomic Solution Results for ω_l^2
 - 1. Results for ω_g^2 and ω_{cf}^2
 - 2. Result for ω_e^2
- C. Diatomic Solute Results for $\langle \tilde{\mathcal{F}}^2 \rangle_0$ and $\langle \tilde{\mathcal{F}}^2 \rangle_0$
 - 1. Result for $\langle \tilde{\mathcal{F}}^2 \rangle_0$
 - 2. Decomposition of $\langle \tilde{\mathcal{F}}^2 \rangle_0$
 - 3. Expressions for Components of $\langle \tilde{\mathcal{F}}^2 \rangle_0$
 - 4. The Integrals $\vec{e}_z \cdot K_{ik} \cdot \vec{e}_z$ and $\vec{e}_z \cdot K_{jl} \cdot \vec{e}_z$
 - 5. The Integral $\vec{e}_z \vec{e}_z \vec{e}_{q_1} \vec{e}_{q_1} :: K_{ijkl}$
 - 6. The Remaining Integrals
- D. Summary
- XIV. The Fluctuating-Force Autocorrelation Function for Solute Normal Mode Motions in a Vibrating Solvent
 - A. Definition of $\langle \tilde{\mathcal{F}}(t)\tilde{\mathcal{F}}\rangle_{0v}$
 - B. Expansion of the Fluctuating Force
 - C. Matrix Form for $(\tilde{\mathcal{F}}(t)\tilde{\mathcal{F}})_{0\nu}$
- XV. A Model for the Statistical Mechanics of Vibrating Solvents
 - A. The Fictitious Solvent
 - B. The Static Model
 - C. The Mean Solvent Vibrational Force Field
 - D. The Dynamic Model
 - E. Validity of the Model
- XVI. Reduction of the Fluctuating-Force Autocorrelation Matrix
 - A. Block Diagonal Form for $\langle \tilde{\mathcal{F}}(t)\tilde{\mathcal{F}}^T\rangle_{0\nu}$ and the V Submatrix
 - B. Reduction of the Matrix Elements
 - C. A Quantum Correction
- XVII. Evaluation of the Dynamical Matrices
 - A. Preliminaries
 - B. Evaluation of ω_D^2
 - 1. Evaluation of $\omega_{g,s}^2$ and $\omega_{cf,s}^2$
 - 2. Evaluation of ω_{Dl}^2
 - C. Evaluation of Ω_D^2
- XVIII. Gaussian Model Construction of $M_D(t)$
 - A. The Gaussian Model
 - 1. The Matrix Elements of $\langle \mathcal{F}_1^{(v)} \mathcal{F}_1^{(v)T} \rangle_0$
 - 2. The Matrix Elements of $\langle \hat{\mathcal{F}}_{1}^{(v)} \hat{\mathcal{F}}_{1}^{(v)T} \rangle_{0}$
 - B. Preliminary Results
 - 1. Expansion of the Vibrational Force Gradients
 - 2. Simplifications for Sitewise Additive Potentials
 - C. Evaluation of $[\langle \mathcal{F}_1^{(v)} \mathcal{F}_1^{(v)T} \rangle_0]_{rs}$
 - D. Evaluation of $[\langle \hat{\mathcal{F}}_{1}^{(v)} \hat{\mathcal{F}}_{1}^{(v)T} \rangle_{0}]_{rs}$
 - 1. Decomposition of $\langle \hat{\mathcal{F}}_{1}^{(v)} \hat{\mathcal{F}}_{1}^{(v)T} \rangle_{0}$
 - 2. Evaluation of $[\langle \dot{\mathcal{F}}_{1}^{(v)} \dot{\mathcal{F}}_{1}^{(v)T} \rangle_{0d,\iota(r)}]_{rs}$
 - 3. Evaluation of $[\langle \hat{\mathcal{F}}_{1}^{(v)} \hat{\mathcal{F}}_{1}^{(v)} \rangle_{0i,i(r)}]_{rs}$
 - E. Specialization to Diatomic Solutions
 - 1. The Diatomic Solution Tensors

- 2. Diatomic Solution Result for $\langle \mathcal{F}_{1}^{(v)} \mathcal{F}_{1}^{(v)} \rangle_{0}$
- 3. Nomenclature for the Site-Density Integrals
- 4. Diatomic Solution Results for $\langle \hat{\mathcal{F}}_{1}^{(v)} \hat{\mathcal{F}}_{1}^{(v)} \rangle_{0}$
- XIX. Superposition Approximations for the Site Densities
 - XX. Evaluation of $\langle \mathscr{F}(t)\mathscr{F} \rangle_{0\nu}$ for Diatomic Solutions
 - A. Form of $\langle \widetilde{\mathcal{F}}(t)\widetilde{\mathcal{F}}\rangle_{0\nu}$ for Diatomic Solvents
 - B. Evaluation of the Liquid-Phase Frequencies
 - C. Evaluation of $M_D(t)$
 - 1. The Gaussian Model
 - 2. Explicit Forms for the Quantities $A_{iikl}[b_g; \vec{q}, \vec{\bar{q}}]$
 - 3. Evaluation of the Vector Functions
 - 4. Evaluation of the Scalar Functions

XXI. Summary of Diatomic Solution Results for the VV Contribution to T_1

- A. Diatomic Solution Results for $\langle \mathcal{F}_{1}^{(v)} \mathcal{F}_{1}^{(v)} \rangle_{0}$ and $\langle \dot{\mathcal{F}}_{1}^{(v)} \dot{\mathcal{F}}_{1}^{(v)} \rangle_{0}$
 - 1. Quantities Appearing in the Expressions
 - 2. Vector Integrals
 - 3. The B Functions
 - 4. Result for $\langle \mathcal{F}_1^{(v)} \mathcal{F}_1^{(v)} \rangle_0$
 - 5. Decomposition of $\langle \hat{\mathcal{F}}_{1}^{(v)} \hat{\mathcal{F}}_{1}^{(v)} \rangle_{0}$
 - 6. Expressions for the Components of $\langle \hat{\mathcal{F}}_{1}^{(v)} \hat{\mathcal{F}}_{1}^{(v)} \rangle_{0}$
 - 7. The Integral $\vec{e}_z \vec{e}_z 1 :: K_{ijkl}$
 - 8. The Remaining Integrals
 - 9. Evaluation of the Integrands
- B. Diatomic Solvent Results for ω_D and Ω_D
 - 1. Quantities Appearing in the Expressions
 - 2. Result for ω_D^2
 - 3. Result for Ω_D^2
- C. Summary

XXII. First Applications

XXIII. Discussion

- Appendix A. Spherical Polar Coordinate Expressions for Quantities Appearing in the Vector Integrals
 - 1. The Solute Molecule Body-Fixed Single-Vector Integrals
 - 2. The Solute Molecule Body-Fixed Double-Vector Integrals
 - 3. The Solvent Molecule Body-Fixed Single-Vector Integrals
 - 4. The Solvent Molecule Body-Fixed Double-Vector Integral

Appendix B. The Transformation Coefficients

- 1. General Considerations
- 2. Diatomic Molecules: The Generalized Coordinates
- 3. Diatomic Molecules: The Transformation Coefficients
- 4. Specialization to Solvent Molecule 1
- 5. Specialization to the Solute System
- Appendix C. Site Densities and Superposition Approximations for Molecular Solvents
 - 1. The Instantaneous Densities
 - 2. Configuration Space Probability Distribution Function of the Solution
 - 3. Fixing Constraints
 - 4. Conditional Probability Distribution Functions
 - 5. Ensemble Averaged Densities
 - 6. Reduction of Ensemble Averages
 - 7. Site Densities in Terms of Fixed-Site p.d.f.'s

- 8. Superposition Approximations
- Appendix D. The Mass Matrix for Diatomic Molecules
 - 1. Specialization to the Solute System
 - 2. Specialization to Solvent Molecule 1
- Appendix E. Reduction of Ensemble Averages Involving the Bond-Axis Unit Vector \vec{e}_{q_1}
 - 1. Proof of Eq. (9.23b)
 - 2. Reduction of Ensemble Averages

Acknowledgments

ELECTRON DEGRADATION IN MOLECULAR SUBSTANCES

MINEO KIMURA,* MITIO INOKUTI, and MICHAEL A. DILLON

Argonne National Laboratory, Argonne, Illinois

CONTENTS

Mathematical Symbols

- I. Introduction
 - A. Scope of This Chapter
 - B. A Historical Sketch
 - C. Experiments Closely Related to the Theme of This Chapter
- II. Degradation Dynamics: Collision Processes and Cross Sections
 - A. Energetic Electrons
 - B. Subexcitation Electrons
 - 1. Vibrational Excitation
 - 2. Rotational Excitation
 - 3. Momentum Transfer Upon Elastic Scattering
 - 4. Electron Attachment
- III. Degradation Kinetics
 - A. Kinetic Equations
 - 1. The Liouville Equation
 - 2. The Boltzmann Equation
 - 3. The Fokker-Planck Equation
 - 4. Reduced Boltzmann Equation
 - B. Degradation Spectra and the Spencer-Fano Equation
 - 1. The Incremental Degradation Spectrum
 - 2. The Cumulative Degradation Spectrum
 - 3. The Stationary (Time-Independent) Spencer-Fano Equation
 - 4. The Spencer-Fano Equation for Mixtures
 - C. Approximate Solutions to the Spencer-Fano Equations: The Continuous Slowing-Down Approximation
 - 1. Elementary Considerations
 - 2. Connection with the Spencer-Fano Equation
 - 3. Behavior of the Subexcitation Electron Distribution
- * Dr. Kimura's other affiliation is: Department of Physics, Rice University, Houston, Texas 77251.

Advances in Chemical Physics, Volume LXXXIV, Edited by I. Prigogine and Stuart A. Rice. ISBN 0-471-58726-5 © 1993 John Wiley & Sons, Inc.

194

- D. Direct Evaluation of the Yield of a Product Species: The Fowler Equation
- E. Subexcitation Electrons and Thermal Electrons
- F. Monte Carlo Methods
- G. Other Incident Particles
 - 1. Photons
 - 2. Heavy Charged Particles
- IV. Physical Quantities and Observables
 - A. The Entry Spectrum of Subexcitation Electrons
 - B. Yields of Products
 - C. The Range and the Slowing-Down Time
 - D. Statistical Fluctuations
- V. Applications
 - A. High-Energy Electrons
 - 1. Ar-H₂ Mixture: Time-Dependent Aspects
 - 2. Water Vapor: Comparative Study Using the Monte Carlo Method
 - B. Subexcitation Electrons
 - 1. O₂-N₂ Mixture
 - 2. He and Ne Admixed with N₂: Experiment and Theory
 - C. Electron Thermalization Processes
- VI. Future Perspectives of the Electron Degradation Theory

Acknowledgments

ADIABATIC AND QUASIDIABATIC STATES IN A GAUGE THEORETICAL FRAMEWORK

T. PACHER, L. S. CEDERBAUM, and H. KÖPPEL

Department of Theoretical Chemistry, Institute for Physical Chemistry, University of Heidelberg, Heidelberg, Federal Republic of Germany

CONTENTS

- I. Introduction
- II. The General Theory of Quasidiabatic States
 - A. The Matrix Schrödinger Equation for the Nuclear Motion: Gauge Theoretical Formulation
 - B. Gauge Potentials in Subspaces and Quasidiabatic States
 - C. The Lorentz Gauge and Optimal Quasidiabatic States
 - D. Baer's Method and the Lorentz Gauge
- III. Quasidiabatic States by Block Diagonalization of the Electronic Hamiltonian
 - A. Block Diagonalization and Quasidiabaticity
 - B. The Derivative Couplings after Block Diagonalization: Qualitative Properties
 - C. Block Diagonalization and the Lorentz Gauge
 - D. Propagative Block Diagonalization Procedure and Connection to Baer's Method
- IV. Block Diagonalization in Electronic Ab Initio Calculations
 - A. General Aspects
 - B. Unitary Transformations of Molecular Orbitals and Frozen Orbitals
 - V. Applications of Block Diagonalization
 - A. The Induced Renner-Teller Effect
 - B. Diabatization in Saddle Systems: The ABA Molecule
 - C. Use of Frozen Orbitals in Ab Initio Calculations: The Ethylene Dication
- VI. Summary and Outlook

Appendix: Use of Curvilinear Coordinates

Acknowledgments

ONE-DIMENSIONAL QUANTUM MECHANICAL PROBLEMS WITH COMPLICATED POTENTIALS. THE PROPAGATOR METHOD OF SOLUTION AND SOME CHEMICAL APPLICATIONS

M. V. BASILEVSKY and V. M. RYABOY*

Karpov Institute of Physical Chemistry, Moscow, Russia

CONTENTS

- I. Introduction
- II. The Quantum and Quasiclassical Propagators
 - A. Matrix Notations
 - B. The Definition of the Propagator and Its Properties
 - C. The Quasiclassical Approximation
 - D. The Propagator in the Case of Under-Barrier Tunneling
- III. The Scattering Theory in One Dimension
 - A. The Standard Solutions in Asymptotic Regions
 - B. The Regular Solutions
 - C. The Wronskians of Standard and Regular Solutions
 - D. The Properties of Coefficients a and b of Regular Solutions
 - E. Applications
 - 1. Open Channels r and l. Transmission and Reflection Coefficients
 - 2. Closed Channels r and l. The Energy Levels
 - 3. The Widths of Resonance States
- IV. The Reflection and Transmission Coefficients
 - A. General Consideration. The Origin of Resonance Effects
 - B. Two Turning Points. The Under-Barrier Tunneling in the Quasiclassical Approximation
 - C. Four Turning Points. The Scattering on a Potential Well in the Quasiclassical Approximation

^{*}Present Address: Department of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel.

Advances in Chemical Physics, Volume LXXXIV, Edited by I. Prigogine and Stuart A. Rice. ISBN 0-471-58726-5 © 1993 John Wiley & Sons, Inc.

V. The Energy Levels

- A. General Consideration. The Perturbation Theory for Real Energies
- B. Two Turning Points. The Exact Calculation of the Ground State Energy in a Single Potential Well
- C. Four Turning Points. The Purely Quasiclassical Levels in a Double-Well System

VI. The Calculation of Widths

- A. General Consideration. The Perturbation Theory for Complex Energies
- B. The Decay Proceeding from a Single Potential Well in the Quasiclassical Approximation. Three and Four Turning Points
- C. Five Turning Points. The Decay of a Double-Well System in the Quasiclassical Approximation
 - 1. The Motivation of the Problem
 - 2. The Slightly Perturbed Double-Well System
 - 3. The Decay Rate in the Fast Relaxation Regime

SIMULATION OF NONLINEAR ELECTRONIC SPECTROSCOPY IN THE CONDENSED PHASE

LAURENCE E. FRIED* and SHAUL MUKAMEL

Department of Chemistry, University of Rochester, Rochester, New York

CONTENTS

- I. Introduction
- II. Semiclassical Theory of Optical Lineshapes
 - A. Features of Spectroscopy in the Condensed Phase
 - B. Formulation of Linear and Nonlinear Spectroscopy
 - C. Simulation of Condensed-Phase Electronic Spectroscopy
 - 1. Inhomogeneous Cumulant Expansion
 - 2. Phase Averaging
 - D. Exactly Solvable Models for the Optical Response
 - 1. The Multimode Brownian Oscillator Model
 - 2. Stochastic Models
 - 3. The Optical Bloch Equations
 - E. Comparison of Simulation Techniques and Models
 - F. Direct Visualization of $R(t_3, t_2, t_1)$
 - G. Brownian Oscillator Analysis
- III. Application to Benzene-Ar, Clusters
 - A. Brownian Oscillator Analysis of $C_c(\omega)$
 - B. Calculation of Spectroscopic Quantities
 - C. Dynamical and Structural Trends as a Function of N
 - D. Jump Dynamics in Benzene-Ar, Clusters

Appendix A. Scaling of Spectroscopic and Energetic Quantities with N

Appendix B. Analytical Results for Model Problems

Appendix C. Harmonic Reference Model

Acknowledgment

References

*Current address: Chemistry and Materials Science Department, L-277, Lawrence Livermore National Laboratory, Livermore, CA.

Advances in Chemical Physics, Volume LXXXIV, Edited by I. Prigogine and Stuart A. Rice. ISBN 0-471-58726-5 © 1993 John Wiley & Sons, Inc.