

CONTENTS

INHOMOGENEOUS RF FIELDS: A VERSATILE TOOL FOR THE STUDY OF PROCESSES WITH SLOW IONS	1
By Dieter Gerlich	
MULTIPHOTON IONIZATION STATE SELECTION: VIBRATIONAL-MODE AND ROTATIONAL-STATE CONTROL	177
By Scott L. Anderson	
CONTROL OF TRANSITION-METAL CATION REACTIVITY BY ELECTRONIC STATE SELECTION	213
By James C. Weisshaar	
STATE-SELECTED CHARGE TRANSFER AND CHEMICAL REACTIONS BY THE TESICO TECHNIQUE	263
By Inosuke Koyano and Kenichiro Tanaka	
Multicoincidence Detection in Beam Studies of Ion–Molecule Reactions: Technique and Application to $X^- + H_2$ Reactions	309
By Jean-Claude Brenot and Marie Durup-Ferguson	
STATE-SELECTED AND STATE-TO-STATE ION-MOLECULE REACTION DYNAMICS BY PHOTOIONIZATION AND DIFFERENTIAL REACTIVITY METHODS	401
By Cheuk-Yiu Ng	
CROSSED-MOLECULAR BEAM STUDIES OF STATE-TO-STATE REACTION DYNAMICS	501
By Jean H. Futrell	
PROTON ENERGY LOSS SPECTROSCOPY AS A STATE-TO-STATE PROBE OF MOLECULAR DYNAMICS	553
By Gereon Neidner-Schatteburg and J. Peter Toennies	
AUTHOR INDEX	649
Subject Index	671

xiii

INHOMOGENEOUS RF FIELDS: A VERSATILE TOOL FOR THE STUDY OF PROCESSES WITH SLOW IONS

DIETER GERLICH

Fakultät für Physik, Universität Freiburg, Freiburg, Germany

- I. Introduction
- II. Motion of Charged Particles in Fast Oscillatory Fields
 - A: Remarks on the Development of the Theory
 - B. The Adiabatic Approximation
 - 1. The Equation of Motion
 - 2. The Effective Potential
 - 3. Adiabaticity
 - 4. Stability
 - C. Special Field Geometries
 - 1. Laplace's Equation
 - 2. Special Solutions
 - 3. Effective Potentials
 - D. Two-Dimensional Multipoles
 - 1. The Ideal Multipole
 - 2. Safe Operating Conditions
 - 3. Is There an (a_n, q_n) Stability Diagram?
 - 4. Potentials of Realistic Multipoles
 - E. Energy Distributions
 - 1. Instantaneous and Time-Averged Energy
 - 2. Influence of Collisions
- III. Experimental Applications and Tests of Several rf Devices
 - A. Introduction
 - B. Quadrupole
 - 1. Low-Mass Band Pass
 - 2. Focusing Properties
 - 3. Photoionization Source
 - 4. Resonant Excitation by Auxiliary Fields

State-Selected and State-to-State Ion-Molecule Reaction Dynamics, Part 1: Experiment, Edited by Cheuk-Yiu Ng and Michael Baer. Advances in Chemical Physics Series, Vol. LXXXII. ISBN 0-471-53258-4 © 1992 John Wiley & Sons, Inc.

- C. Octopole Beam Guide
 - 1. Transmission Properties
 - 2. Potential Distortions, Ring Electrodes
 - 3. Calibration of the Axial Energy
 - 4. Maximum Confined Transverse Energy
- D. Traps as Ion Sources
- E. Ring Electrode Trap
 - 1. The 10-350 K Trap
 - 2. Collision Temperature
- IV. Description of Several Instruments
 - A. Overview: Instruments Using rf Devices
 - B. The Universal Guided-Ion-Beam Apparatus
 - 1. Description of the Apparatus
 - 2. Kinematic Averaging
 - 3. Low-Resolution Differential Cross Sections
 - 4. Combinations with Optical Methods
 - C. Differential Scattering Apparatus
 - D. Merged-Beam Apparatus
 - 1. Description of the Apparatus
 - 2. Kinematic Considerations
 - E. Temperature-Variable Ion Trap Apparatus
 - 1. Description of the Apparatus
 - 2. Determination of Rate Coefficients
 - 3. Association Rate Coefficients
 - V. Studies of Ion Processes in RF Fields: A Sampling
 - A. Integral Cross Sections and Thermal Rate Coefficients
 - 1. Charge Transfer to Rare Gas Ions
 - 2. The Prototype System H⁺ + H₂
 - 3. Small Rate Coefficients
 - B. Differential and State-to-State Cross Sections
 - 1. Single-Electron Transfer in Ar²⁺ + He
 - 2. Dissociative Electron Transfer in He⁺ + O₂
 - 3. Proton-Deuteron Exchange in H⁺ + D₂
 - C. Application of Optical Methods
 - 1. Chemiluminescence
 - 2. Laser Preparation of Reactants
 - 3. Laser Analysis of Products
 - D. Radiative Association and Fragmentation
 - 1. Association of H⁺·H₂ and C⁺·H₂
 - 2. Radiative Lifetimes of H⁺·H₂ and CH₃⁺·H₂
- VI. Conclusions and Future Developments

Acknowledgments

MULTIPHOTON IONIZATION STATE SELECTION: VIBRATIONAL-MODE AND ROTATIONAL-STATE CONTROL

SCOTT L. ANDERSON*

Department of Chemistry,
State University of New Y ork at Stony Brook,
Stony Brook, NY

- I. Introduction—Unique Features of Multiphoton Ion Sources
- II. MPI State-Selection Methods
 - A. Single-Color Ionization
 - B. Limitations on MPI State Selection
 - C. Two-Color Ionization Schemes
 - D. Molecular Ions That Have Been MPI State Selected to Date
 - 1. Rare Gas and Other Atoms
 - 2. Hydrogen
 - 3. Nitrogen
 - 4. Oxygen
 - 5. Nitric oxide
 - 6. Carbon Monoxide
 - 7. Hydrogen Bromide
 - 8. Carbonyl Sulfide
 - 9. Ammonia
 - 10. Acetylene
 - 11. Aromatics
 - 12. Problem Molecules
- III. MPI State-Selected Ion Chemistry Studies
 - A. Studies of Ultracold Chemistry
 - B. Beam Studies of Internal Energy Effects
 - C. Jet Studies of Angular Distributions
 - D. ICR Studies of Lifetimes and Vibrational Effects
 - E. Unimolecular Dissociation Studies
- *Alfred P. Sloan Foundation Research Fellow, Camille and Henry Dreyfus Foundation Teacher-Scholar.

State-Selected and State-to-State Ion-Molecule Reaction Dynamics, Part 1: Experiment, Edited by Cheuk-Yiu Ng and Michael Baer. Advances in Chemical Physics Series, Vol. LXXXII. ISBN 0-471-53258-4 © 1992 John Wiley & Sons, Inc.

IV. Future Directions

- A. Ideas for New MPI State-Selection Schemes
 - 1. IR-UV Double Resonance
 - 2. MPI-ZEKE Coincidence
- B. Conclusion

Acknowledgments

CONTROL OF TRANSITION-METAL CATION REACTIVITY BY ELECTRONIC STATE SELECTION

JAMES C. WEISSHAAR

Department of Chemistry,
University of Wisconsin-Madison,
Madison, WI

- I. Introduction
- II. Overview of Transition-Metal-Cation Chemistry
- III. Preparation of Electronic State-Specific M⁺ Beams by Resonant Two-Photon Ionization
 - A. Photoionization Physics
 - B. Experimental Technique: Atomic Beam Source and Time-of-Flight Photoelectron Spectroscopy
 - C. Results: M⁺ State Distributions
- IV. Determination of State-Specific M⁺ Reaction Cross Sections
 - A. Experimental Technique: Measurement of State-Averaged Reaction Cross Section
 - Overview
 - 2. Experimental Details
 - B. Results: State-Specific Reaction Cross Sections
 - 1. Extraction of State-Specific Cross Sections From Data
 - 2. V+ + Hydrocarbon Results
 - 3. $Fe^+ + C_3H_8$ Results
 - 4. Comparisons with Previous Results
- V. Reaction Mechanisms
 - A. Overview
 - B. Orbital Symmetry and Electron Spin Conservation in C—H Bond Insertion
 - 1. The Simpler Case of $M^+ + H_2$
 - 2. Generalization to M^+ + Alkane: The Importance of Electron Spin Conservation
 - 3. $V^+ + C_2H_6$, C_3H_8 , C_2H_4 Mechanisms
 - 4. $Fe^+ + C_3H_8$ Mechanism

State-Selected and State-to-State Ion-Molecule Reaction Dynamics, Part 1: Experiment, Edited by Cheuk-Yiu Ng and Michael Baer. Advances in Chemical Physics Series, Vol. LXXXII. ISBN 0-471-53258-4 © 1992 John Wiley & Sons, Inc.

IV. Summary and Prognosis
Acknowledgments
References

STATE SELECTED CHARGE TRANSFER AND CHEMICAL REACTIONS BY THE TESICO TECHNIQUE

INOSUKE KOYANO

Department of Material Science, Himeji Institute of Technology, Himeji, Japan

KENICHIRO TANAKA

National Laboratory for High Energy Physics, Tsukuba, Japan

- I. Introduction
- II. Experimental Technique
 - A. General Consideration
 - B. Apparatus and Procedure
 - C. Threshold-Electron Spectra (TES) and Applicability of the of the Technique
- III. Charge-Transfer and Chemical Reactions in Three-Atom Systems: $(Ar + XY)^+$
 - A. $(Ar + H_2)^+$ System
 - B. $(Ar + O_2)^+$ System
 - C. $(Ar + NO)^+$ System
 - D. $(Ar + N_2)^+$ System
- IV. Charge-Transfer and Chemical Reactions in Four-Atom Systems
 - A. $(O_2 + H_2)^+$ System
 - B. $(NO + H_2)^+$ System
 - C. $(N_2 + H_2, HD, D_2)^+$ Systems
 - D. $(O_2 + N_2)^+$ System
 - V. More Complex Systems
 - A. O, + CH, Reaction A: A Case Involving Deep Rearrangement
 - B. $C_2H_4^+ + C_2H_4$ Reaction: Mode Specificity in Bimolecular Reaction
- VI. Another Capability: Separation of Two Microscopic Reaction Mechanisms in the Reaction $MH^+ + MH \rightarrow MH_2^+ + M$

State-Selected and State-to-State Ion-Molecule Reaction Dynamics, Part 1: Experiment, Edited by Cheuk-Yiu Ng and Michael Baer. Advances in Chemical Physics Series, Vol. LXXXII. ISBN 0-471-53258-4 © 1992 John Wiley & Sons, Inc.

VII. Concluding Remarks—Future Developments
Acknowledgments
References

MULTICOINCIDENCE DETECTION IN BEAM STUDIES OF ION-MOLECULE REACTIONS: TECHNIQUE AND APPLICATION TO X⁻ + H₂ REACTIONS

JEAN-CLAUDE BRENOT

LCAM, Université Paris-Sud, Orsay, France

MARIE DURUP-FERGUSON

LPCR, Université Paris-Sud, Orsay, France

- I. Introduction
 - A. Coincidences and Multicoincidences
 - B. Preliminary Remarks and Comments
- II. Time Correlation
 - A. Ideal correlation
 - B. Practical correlation
 - C. Efficiency
 - 1. Qualitative Analysis
 - 2. Quantitative analysis
 - D. Redundant Variables as a Tool for Noise Removal
- III. Position-Sensitive Detection
 - A. The Physical Layer: The Microchannel Plate Detector
 - B. The Encoding Layer: Position-Detection Methods
 - 1. Brief General Considerations
 - 2. Discrete Anodes and Logic Readout
 - 3. Discrete Anodes and Analog Encoding
 - 4. Continuous Anodes
 - 5. Photodiode Arrays
- IV. The Multicoincidence Layer
 - A. Analog or Digital Time Determination?

State-Selected and State-to-State Ion-Molecule Reaction Dynamics, Part 1: Experiment, Edited by Cheuk-Yiu Ng and Michael Baer. Advances in Chemical Physics Series, Vol. LXXXII. ISBN 0-471-53258-4 © 1992 John Wiley & Sons, Inc.

- B. Coincidences with a Single Time Digitizer
 - 1. Histogram Mode
 - 2. Stack Mode
- C. Enhanced Hardware Methods
- D. Data Processing
- E. Miscellaneous Remarks and Dreams
 - 1. Spatial and Time Correlations
 - 2. Coalescing Coincidence Spectra
 - 3. Multicoincidences for Three-Body Systems
 - 4. Multicoincidences for Many-Body systems
 - 5. Multicoincidences and High-Energy Resolution
 - 6. Hardware and Software
 - 7. State-to-State Chemistry and Shannon's Theorem
- V. Application to $X^- + H_2$ Reactions
 - A. Ion-Formation Reactions
 - B. Electron-Detachment Reactions
 - C. Competition Between Ion-Formation and Electron-Detachment Reactions in the $X^- + H_2$ Systems
 - 1. Total-Cross-Section Energy Profiles
 - 2. Velocity Vector Diagrams
 - 3. Potential Energy Surfaces
 - 4. Impulse Model
 - 5. Conclusion
- VI. Concluding Remarks and Suggestions

Appendix A—Practical Correlation with High Count Rates

- A. Qualitative Analysis
- B. Reliability
- C. Monocoincidence Experiment Involving a Single Process
- D. Monocoincidence Experiment Involving Several Processes

Appendix B—Frequency Domain Study of RC Lines

Appendix C—Example of Multipurpose Set-up

Appendix D—Example of Fast Multicoincidence System

Appendix $E - X^- + H_2$ Reactions: The Orsay Apparatus

- A. Description of the Apparatus
- B. Data Reduction
 - 1. Determination of the Fast-Beam Axis
 - 2. Determination of the Detachment Cross Sections
 - 3. Determination of the Reactive Charge-Transfer Cross Sections
 - 4. Direct Determination of Cross Sections
- C. Comments

Acknowledgments

STATE-SELECTED AND STATE-TO-STATE ION-MOLECULAR REACTION DYNAMICS BY PHOTOIONIZATION AND DIFFERENTIAL REACTIVITY METHODS

CHEUK-YIU NG

Ames Laboratory, U.S. Department of Energy and Department of

Chemistry

Iowa State University

Ames, Iowa

CONTENTS

- I. Introduction
- II. Experimental Considerations and Procedures
 - A. Triple-Quadrupole-Double-Octopole Photoionization Apparatus
 - 1. Measurements of Absolute State-selected Cross Sections
 - 2. Retarding-Potential-Energy Analyses of Product Ions
 - 3. Detection of Product-Ion States by the Differential Reactivity Method
 - 4. Measurements of Absolute Spin-Orbit State-Transition Cross Sections
 - B. Crossed Ion-Neutral Beam Photoionization Apparatus
- III. Experimental Results and Discussion
 - A. Atom-Atom System
 - 1. $[Ar + Ar]^+$
 - B. Atom-Diatom Systems
 - 1. $[Ar + N_2]^+$
 - 2. $\Gamma Ar + CO^{+}$
 - 3. $[Ar + O_2]^+$
 - 4. $[Ar + H_2]^+$
 - 5. $[O + N_2]^+$
 - 6. $[O + H_2]^+$
 - C. Diatom-Diatom System $[H_2 + H_2]^+$
- IV. Conclusions and Future Developments

Acknowledgments

State-Selected and State-to-State Ion-Molecule Reaction Dynamics, Part 1: Experiment, Edited by Cheuk-Yiu Ng and Michael Baer. Advances in Chemical Physics Series, Vol. LXXXII. ISBN 0-471-53258-4 © 1992 John Wiley & Sons, Inc.

CROSSED-MOLECULAR BEAM STUDIES OF STATE-TO-STATE REACTION DYNAMICS

JEAN H. FUTRELL

Department of Chemistry and Biochemistry
University of Delaware
Newark, Delaware

CONTENTS

- I. Introduction
- II. Charge Transfer
 - A. Fine-Structure Transitions in the Rare Gases Ar, Kr, and Xe
 - B. Charge Transfer of N₂⁺ with N₂
 - C. Charge Transfer of Ar^+ ($^2P_{3/2}$) with $NO(^2\Pi, v=0)$
 - D. Reactive and Unreactive Scattering of $Ar^{+}(^{2}P_{3/2})$ and $Ar^{+}(^{2}P_{3/2})$ by N_{2}
- III. Collision-Induced Dissociation of Polyatomic Ions
 - A. Acetone
 - B. Propane and Nitromethane Ion CID
- IV. Future Developments

Acknowledgments

PROTON ENERGY LOSS SPECTROSCOPY AS A STATE-TO-STATE PROBE OF MOLECULAR DYNAMICS

GEREON NIEDNER-SCHATTEBURG* and J. PETER TOENNIES

Max-Planck-Institut für Strömungsforschung, Göttingen, F.R. Germany

CONTENTS

- I. Introduction
- II. Experimental Method
- III. Mechanisms of Vibrational Excitation
 - A. The Forced-Harmonic-Oscillator Model
 - B. The Induced-Dipole Mechanism
 - C. Bond Dilution and the Internal Vibronic Mechanism (IVM)
 - D. The Quasimolecular Mechanism (QMM)
 - E. Rovibrational Excitation via Impulsive Scattering
- IV. Experimental Examples: Systems without Charge Transfer
 - A. Atomic Targets
 - B. Diatomic Target Molecules
 - C. Polyatomic Target Molecules
 - V. Mechanisms of Charge Transfer
 - A. Nonadiabaticity
 - B. Pathways
 - C. Vibrational Effects
- VI. Experimental Examples: Charge-Transfer Systems
 - A. Atomic Targets
 - B. Diatomic Target Molecules
 - C. Triatomic Target Molecules
 - D. Polyatomic Target Molecules
- VII. Concluding Remarks

Acknowledgments

References

* Present address: Institut für Physikalische und Theoretische Chemie, Technische Universität München, Garching, F. R. Germany.

State-Selected and State-to-State Ion-Molecule Reaction Dynamics, Part 1: Experiment, Edited by Cheuk-Yiu Ng and Michael Baer. Advances in Chemical Physics Series, Vol. LXXXII. ISBN 0-471-53258-4 © 1992 John Wiley & Sons, Inc.