(C)

CONTENTS

Transition State Spectroscopy of Bimolecular Reactions Using Negative Ion Photodetachment By Richardo B. Metz, Stephen E. Bradforth, and Daniel M. Nuemark	1
Infrared Vibrational Predissociation Spectroscopy of Small Size-Selected Clusters By Friedrich Huisken	63
The Dynamics of Triplet Excitons in Mixed Molecular Crystals By Ross Brown and Philemon Kottis	141
Theoretic Physicochemical Problems of Clathrate Compounds By Vladimir E. Zubkus, Evaldas E. Tornau, and Vladimir R. Belosludov	269
Simulation and Symmetry in Molecular Diffusion and Spectroscopy By M. W. Evans	361
VIBRONIC INTERACTIONS IN POLYNUCLEAR MIXED-VALENCE CLUSTERS By I. B. Bersuker and S. A. Borshch	703
Author Index	783
Subject Index	803

TRANSITION STATE SPECTROSCOPY OF BIMOLECULAR REACTIONS USING NEGATIVE ION PHOTODETACHMENT

RICARDO B. METZ,* STEPHEN E. BRADFORTH, and DANIEL M. NEUMARK†

Department of Chemistry, University of California, Berkeley, California

CONTENTS

- I. Introduction
- II. Experimental Methods
- III. Theoretical Methods
 - A. Time-Independent Analysis
 - B. Time-Dependent Analysis
- IV. Symmetric Hydrogen Exchange Reactions
 - A. Photoelectron Spectrum of BrHBr
 - 1. Summary of Results
 - 2. Analysis: Preliminary Considerations
 - 3. One-Dimensional Simulation of BrHBr Spectrum
 - 4. Two-Dimensional Simulation (Time-Independent)
 - 5. Time-Dependent Analysis of the BrHBr Photoelectron Spectrum
 - 6. Discussion of Results
 - B. Photoelectron and Threshold Photodetachment Spectra of IHI
 - 1. Photoelectron Spectroscopy of IHI and IDI
 - 2. Threshold Photodetachment Spectroscopy of IHI
- V. Asymmetric Hydrogen Exchange Reactions
 - A. General Considerations
 - B. Photoelectron Spectroscopy of BrHI
 - 1. Results and Qualitative Analysis
 - 2. Time-Dependent Simulations of the Spectra
 - 3. Excited Electronic States in the BrHI Photoelectron Spectrum
 - C. Photoelectron Spectroscopy of FHI and FHBr
 - D. Photoelectron Spectroscopy of CH₃OHF and CH₃ODF

*University Fellow, University of California,
†Alfred P. Sloan Fellow and NSF Presidential Young Investigator.

Advances in Chemical Physics, Volume LXXXI, Edited by I. Prigogine and Stuart A. Rice. ISBN 0-471-54570-8 © 1992 John Wiley & Sons, Inc.

- 2 RICARDO B. METZ, STEPHEN E. BRADFORTH, AND DANIEL M. NEUMARK
- VI. Summary
 Acknowledgments
 References

INFRARED VIBRATIONAL PREDISSOCIATION SPECTROSCOPY OF SMALL SIZE-SELECTED CLUSTERS*

FRIEDRICH HUISKEN

Max Planck Institut für Strömungsforschung, Göttingen, Federal Republic of Germany

CONTENTS

Abstract

- I. Introduction
- II. Kinematic Considerations
- III. Experimental Setup
- IV. Data Collection and Analysis
- V. Results
 - A. Ethene
 - B. Benzene
 - C. Sulfur Hexafluoride
 - D. Ammonia
 - E. Methanol
- VI. Concluding Remarks

Acknowledgments

THE DYNAMICS OF TRIPLET EXCITONS IN MIXED MOLECULAR CRYSTALS

ROSS BROWN and PHILEMON KOTTIS

Centre de Physique Moléculaire Optique et Hertzienne, Université de Bordeaux I, Talence, France

CONTENTS

Introduction

- I. The Experimental Problem
- II. Hamiltonian
 - A. Overview
 - 1. Molecular Hamiltonian
 - 2. Born-Oppenheimer Separability in Molecular Solids
 - B. Hamiltonian of a Molecular Crystal
 - 1. Electronic Hamiltonian of a Rigid Crystal
 - 2. Phonons in Molecular Crystals
 - 3. Exciton-Phonon Coupling
- III. Temperature-Dependent Hopping in Narrow Impurity Bands
 - A. Quantitative Consequences of Hopping Transport of Site Excitations
 - B. Hopping Rates Between Nearly Resonant Guests
 - 1. General Relations
 - 2. Transition Amplitudes for One- and Two-Phonon Processes
 - 3. Transfer Rates
 - C. Application to Naphthalene
 - 1. Application to the Temperature Dependence of Donor-Acceptor Transfer
 - 2. Difficulties of the Hopping Model
- IV. Transport of Excitons Described by the Electronic Density Matrix
 - A. Introduction
 - 1. The Density Matrix
 - 2. Optical Coherence, Exciton Coherence and Site Coherence
 - B. The Pilot Equation for the Electronic Density Matrix
 - 1. Derivation and Meaning
 - 2. Relaxation Rates in the Electronic Eigenbasis

Advances in Chemical Physics, Volume LXXXI, Edited by I. Prigogine and Stuart A. Rice. ISBN 0-471-54570-8 © 1992 John Wiley & Sons, Inc.

- 3. Derivation and Limits of Validity of the Master Equation for the Populations in the Site Basis
- V. Coherent and Incoherent Transport in Disordered Solids
 - A. Introduction
 - 1. Electronic Eigenstates
 - 2. Electronic Relaxation
 - 3. Validity of the Master Equation in the Eigenbasis
 - 4. Approximate Form of the Relaxation Rates
 - B. Interpretation of the Temperature and Concentration Dependence of Exciton Transport
- VI. Diffusionless Transfer
 - A. Donor Eigenstates
 - 1. Hamiltonian
 - 2. Guest Wavefunctions
 - B. Direct Donor-Acceptor Trapping
 - 1. Introduction
 - 2. Approximate Yield of Acceptor Emission
- VII. Dispersive Hopping Transport
 - A. Hopping and Diffusion-Limited Reactions on Fractals
 - B. Simulation of Variable Range Hopping
 - 1. Anomalous Diffusion by Tunneling in Two Dimensions
 - 2. Inapplicability of Hopping on Percolation Clusters
 - 3. Tunneling Represented as a Walk on an Ultra-Metric Space
 - C. Slow Kinetics and Experimental Conditions
- VIII. Conclusion

THEORETIC PHYSICOCHEMICAL PROBLEMS OF CLATHRATE COMPOUNDS

VLADIMIR E. ZUBKUS* and EVALDAS E. TORNAU

Semiconductor Physics Institute, Lithuanian Academy of Sciences, Vilnius, Lithuania, USSR

VLADIMIR R. BELOSLUDOV

Institute of Inorganic Chemistry, Academy of Sciences of USSR, Siberian Branch, Novosibirsk, USSR

CONTENTS

Introduction

- I. Structural and Chemical Properties of Lattice Clathrates
 - A. Hydroquinone
 - B. Hydrates
 - C. Clathrate Carcasses of Urea and Thiourea
- II. Microscopic Hamiltonian
- III. Calculation of Thermodynamic Functions
 - A. Spherical Guest Molecules
 - B. Nonspherical Guest Molecules
 - C. Spherical Guest Molecules in Different Cavities
 - D. Thermodynamics of Clathrates in Cluster Approximation
 - E. Guest Molecules in Channel-Type Clathrates
- IV. Phase Diagrams
 - V. Phase Transitions
 - A. Orientational Phase Transitions
 - B. Concentrational Phase Transitions
 - C. Induced Phase Transitions
- VI. Estimation of Intermolecular Interactions
 - A. Guest-Host Potential
 - B. Guest-Guest Potential

Advances in Chemical Physics, Volume LXXXI, Edited by I. Prigogine and Stuart A. Rice. ISBN 0-471-54570-8 © 1992 John Wiley & Sons, Inc.

^{*} Present address: Division of Electronic Organic Materials, Institute of Chemical Physics, Academy of Sciences of USSR, Moscow, Kosygina 4.

VII. Computational Methods

- A. Molecular Dynamics
- B. Lattice Dynamics

VIII. Thermodynamic Properties of Concrete Clathrates

- A. Hydroquinone
 - 1. Thermodynamics at Zero Pressure
 - 2. Phase P, T, c Diagrams
- B. Hydrates
- C. Urea

Conclusions

Acknowledgments

SIMULATION AND SYMMETRY IN MOLECULAR DIFFUSION AND SPECTROSCOPY

M. W. EVANS

Center for Theory and Simulation in Science and Engineering, Cornell University, Ithaca, New York

CONTENTS

Introduction

- I. The Traditional View
 - A. Einstein's Theory of Translational Brownian Motion
 - B. The Langevin Equation for Translational Brownian Motion
 - C. Contemporary Criticism of the Traditional Approach
 - D. Molecular Translation and Rotation
 - E. Dielectric Relaxation and the Debye Theory of Rotational Diffusion
 - F. Loss of Polarization
 - G. The Concept of Rotational Diffusion
 - H. Rise Transient
 - I. The Fall Transient
 - J. Polarization and Frequency Spectrum
 - K. Dielectric and Far Infrared Spectrum
 - L. The Debye Plateau
 - M. Far Infrared Interferometry
 - N. The Effect of Including the Inertial Term in Eq. (8)
 - O. Rotational Diffusion in a Potential Well: The Itinerant Oscillator
 - P. The Harmonic Approximation
 - Q. The Itinerant Oscillator
 - R. Experiment Testing of the Itinerant Oscillator
 - S. Relationship of the Itinerant Oscillator with the Liouville Equation
 - T. The Grigolini Continued Fraction
 - U. The Statistical Correlation between Rotation and Translation
 - V. The Challenge to Traditional Diffusion Theory
- II. Key Experiments
 - A. Interferometric Spectroscopy of Molecular Liquids

Advances in Chemical Physics, Volume LXXXI, Edited by I. Prigogine and Stuart A. Rice. ISBN 0-471-54570-8 © 1992 John Wiley & Sons, Inc.

- B. The Basic Principles of Fourier Transform Spectroscopy in the Far Infrared
- C. The Interferogram
- D. Key Spectral Data: The Challenge to Diffusion Theory
- E. Condensation of Gas to Liquid
- F. The Molecular Liquid at Room Temperature and Pressure
- G. Molecular Dynamics Simulation
- H. From Liquid to Glass at Constant Pressure
- I. The Challenge to Computer Simulation
- J. Survey of Data for Liquid Dichloromethane
- K. The Relaxation of Nuclear Magnetic Resonance
- L. The Challenge to the Theory of NMR Relaxation
- M. Anisotropy of Diffusion in the Asymmetric Top
- N. Light Scattering
- O. Raman Scattering
- P. The Challenge to the Traditional Approach to Light Scattering
- Q. Neutron Scattering
- R. Infrared Absorption
- S. The Role of Computer Simulation in Data Coordination
- T. Dielectric Relaxation and Far Infrared Absorption

III. Computer Simulation

- A. Summary of Numerical Approximations
- B. Periodic Boundary Conditions
- C. Numerical Integration of the Equations of Motion
- D. The Gear Predictor-Corrector
- E. The Leapfrog Algorithm
- F. Integration of the Rotational Equations
- G. Other Molecular Dynamics Simulation Algorithms
- H. Rahman's Computer Simulation of Liquid Argon
- I. Some Fundamental Properties of Time Correlation Functions
- J. The Long Time Tail
- K. The Interaction between Rotational and Translational Molecular Diffusion
- L. Simulation of Liquid Dichloromethane
- M. Comparison of Simulation with Spectral Data
- N. The Lennard-Jones Atom-Atom Potential for Dichloromethane
- O. Computer Simulation Methods
- P. Some Tests for the Liquid State
- Q. Thermodynamic Properties
- R. Thermodynamic Results for Dichloromethane
- S. Dynamical and Spectral Properties
- T. Microwave and Far Infrared Absorption and Dispersion
- U. Infrared Absorption
- V. Relaxation of Nuclear Magnetic Resonance
- W. Depolarized Rayleigh Scattering
- X. Incoherent, Inelastic Neutron Scattering
- Y. Survey of Correlation Times
- Z. A Survey of Molecular Liquids

IV. Simulation—New Results

A. Linear Response Theory and the Fluctuation-Dissipation Theorem

- B. Taylor Expansion of the Smoluchowski Equation
- C. The Concept of Linear Response
- D. Rotational Diffusion
- E. Solution for Arbitrary Field Strength
- F. Computer Simulation of Rise and Fall Transients in an Arbitrarily Strong External Field Violation of the Linear Response Theory
- G. Computer Simulation in an Applied External Field
- H. Rise Transients
- I. The Langevin Function
- J. Time Dependence of the Rise Transient
- K. The Fall Transient
- L. Correlation Functions in the Field on Steady State
- M. The Decoupling Effect
- N. New Types of Birefringence
- O. The Kerr Effect
- P. The Cotton-Mouton Effect
- Q. Birefringence Induced with Electromagnetic and Neutron Radiation
- R. Flow-Induced Birefringence
- S. Birefringence Effects Discovered by Computer Simulation
- T. Electric-Field-Induced Translational Anisotropy
- U. Birefringence Induced by a Circularly Polarized Laser
- V. Computer Simulation of Birefringence due to Circular Flow
- W. Field Equations for Circular Flow
- X. Anisotropy in Linear Diffusion Produced by a Circularly Polarized Laser
- Y. Electric or Circularly Polarized Laser Field Applied to a Dilute Gas
- Z. Correlation between Rotation and Translation Induced by Electric Fields
- AA. Consequences to the Theory of Polarization
- BB. Diffusion Equations for Rotation and Translation
 - 1. The Problem of Analytical Tractability
 - 2. The Problem of Over-Parameterization

V. Symmetry

- A. Parity Inversion
- B. Time Reversal
- C. Application to Time-Correlation Functions
- D. The Application of Group Theory to Time-Correlation Functions
- E. Point-Group Theory in Frame (X, Y, Z)
- F. Frame (x, y, z) Molecular Point-Group Theory
- G. Ensemble Averages of Scalars
- H. Ensemble Averages of Vectors
- I. Ensemble Averages of Tensors
- J. Ensemble Average Properties in Frame (x, y, z) Some Examples
- K. Higher-Order Tensors
- L. The Effect of External Fields
- M. Fundamental Dynamics: The Noninertial Frame of Reference
- N. Consequences for the Theory of Diffusion
- O. A Simple Langevin Theory of ccf's in Frame (X, Y, Z)
- P. The Role of the Intermolecular Potential

- Q. Patterns of Cross Correlations in Frames (X, Y, Z) and (x, y, z)
- R. The Omega Pattern in Frame (x, y, z)
- S. The \hat{D}_f Pattern in Frame (X, Y, Z)
- T. Other Patterns in Frame (X, Y, Z)
- U. Symmetry of Some ccf's
- V. Analytical Theory of Field-Induced ccf's
- VI. Time-Cross Correlation Functions A Major Challenge to Diffusion Theory
 - A. Ccf's Involving Molecular Vibration
 - B. Computer Simulation of Flexible Water
 - C. The Effect of Internal Vibrations on Correlation Functions
 - D. Cross-Correlation Functions
 - E. Vibration-Translation
 - F. Rotation-Translation
 - G. Simulation Results for Water from 10 to 1273 K
 - H. Time ccf's from 10 to 1273 K
 - I. Higher-Order ccf's
 - J. Solutions of Water in Carbon Tetrachloride
 - K. Liquids of Spherical Top Molecules
 - L. The Effect of External Fields in Liquid Water
 - M. Circularly Polarized Laser Field
 - N. Chiral Liquids
 - O. Circular Flow in Liquid Water
 - P. Other Types of Applied External Field
 - Q. Removal of H-Bonding—The Computer Simulation of Hydrogen Selenide
 - R. Some Consequence for Quantum Mechanics
 - S. Analogies between Quantum and Classical Mechanics
 - T. Rod-like Molecules and Liquid Crystals
 - U. Survey of Results and Future Progress
- VII. Group Theory and Statistical Mechanics
 - A. Point-Group Theory in Frame (X, Y, Z)
 - B. The First Principle (Neumann-Curie Principle)
 - C. D Representations in Frame (X, Y, Z)
 - D. Point-Group Theory in Frame (x, y, z)
 - 1. Principle 2
 - E. The Effects of Fields—Principle 3
 - 1. Principle 3
 - F. Symmetries in Frame (x, y, z)
 - G. External Fields: Symmetries
 - H. The Weissenberg Effect
 - I. Chirality
 - J. Nonequilibrium: New Fluctuation Dissipation Theorems
 - K. Application of the Theorem to Dielectric Relaxation and the Dynamic Kerr Effect
 - L. Experimental Observations
 - M. New Dichroic Effects and Absolute Asymmetric Synthesis
 - N. Spin-Chiral and other Dichroic Effects from Principle 3
 - O. Symmetry Effects in Liquid Crystals
 - P. Basic Symmetry Arguments in Nematogens and Cholesterics
 - 1. The $C_{\infty h}$ Swarm

- 2. The $D_{\infty h}$ Swarm
- 3. The C_{∞} Swarm
- 4. The D_{∞} Swarm
- 5. The Electrically Aligned Nematogen
- 6. The C_{∞} Nematogen
- 7. The $D_{\infty h}$ Nematogen
- 8. The C_{∞} Cholesteric
- 9. The D_{∞} Cholestric
- Q. The Effect of a Shearing Field
- R. Computer Simulation A Specific Application
- S. Symmetry in Smectic Liquid Crystals
 - 1. Local Smectic Point Groups
 - 2. Mapping from $R_h(3)$ to the Smectic Point Groups
- T. Time-Reversal Symmetry

VIII. Simulation and Symmetry in Non-Newtonian Fluid Dynamics

- A. Representation of Simple Couette Flow
- B. Consequences for Langevin Theory
- C. Derivation and Solution of the Langevin Equations
- D. Shear-Induced Structural Effects and gtsm
- E. Crystal-Like Arrested States at High Shear Rates An Excess of Symmetry
- F. Hexagonal C_{3h} (Hermann Mauguin $\overline{6}$)
- G. Shear-Induced Depolarized Light Scattering
- H. Light-Scattering Geometry
- I. Polarimetry
- K. Shear Symmetry in the Dielectric and Far Infrared
- L. Shear-Induced Molecular Polarizability and Polarization
- M. Adaptation of the Morriss-Evans Theorem
- N. Shear-Induced Dipole Relaxation and Far Infrared Power Absorption
- O. The D Symmetries of Shear in the Presence of Fields
- IX. New Pump-Probe Laser Spectroscopies: Symmetry and Application to Atomic and Molecular Systems
 - A. Basic Symmetry Concepts
 - B. Complete Experiment Symmetry
 - 1. Wigner's Principle of Reversality (T)
 - 2. Wigner's Principle of Parity Inversion (P)
 - C. The Symmetry of Cause and Effect: Group Theoretical Statistical Mechanics
 - D. The D Symmetries of Natural and Magnetic Optical Activity
 - E. Application of gtsm—Combined Field Symmetries
 - F. Application of gtsm to Nonlinear Optical Activity
 - G. Optical Activity Induced by a Pump Laser
 - H. Some Expected II-Induced Spectroscopic Effects
 - I. II-Induced Zeeman Splitting
 - J. Rayleigh-Raman Optical Activity Induced by II
 - K. Forward-Backward Birefringence due to Π
 - L. Parity Violation in Molecular Ensembles due to Π
 - M. The Optical Zeeman Effect Quantization of the Imaginary Part of the Atomic or Molecular Polarizability (the Electronic Orbital-Spin Angular Polarizability)

- N. Semiclassical Theory of the Optical Zeeman Effect
- O. Laser-Induced Electronic and Nuclear Spin Resonance
- P. Rayleigh-Raman Light-Scattering Optical Activity due to Optical Rectification
- Q. Forward-Backard Birefringence due to Optical Rectification
- R. The Optical Faraday Effect Order-or-Magnitude Estimate of the Angle of Rotation of a Plane-Polarized Probe
- S. Electric Circular Birefringence and Dichroism
- T. Frequency-Dependent Electric Polarization due to Optical Rectification in Chiral Ensembles
- U. Symmetry of Laser-Induced Electric Polarization in Chiral Single Crystals
- V. Electrodynamics of a Rotating Body—Some Spectral Consequences of the Lorentz Transformation
- W. Parity Nonconservation in New Laser Spectroscopies

Acknowledgments

References

Appendix: Molecular Dynamics Simulation Algorithm "Tetra"

VIBRONIC INTERACTIONS IN POLYNUCLEAR MIXED-VALENCE CLUSTERS

I. B. BERSUKER and S. A. BORSHCH

Laboratory of Quantum Chemistry, Institute of Chemistry, Academy of Sciences of SSRM, Kishinev, USSR

CONTENTS

- I. Introduction
- II. The Vibronic Model for MV Dimers (The PKS Model)
- III. One-Center Interactions in MV Dimers
 - A. Low-Symmetry Crystal Fields and Spin-Orbital Interaction
 - B. Electron Delocalization in MV Dimers in the Presence of a Local Psuedo Jahn-Teller Effect
- IV. The Vibronic Theory of Exchange-Coupled MV Dimers
 - A. Electronic Energy Spectrum
 - B. Vibronic States and Magnetic Characteristics
 - C. The Features of Optical Spectra
 - D. Kinetics of Electron Transfer
- V. Electron Delocalization in Tricenter MV Compounds
 - A. Tricenter Clusters as Equilateral Triangles
 - B. Mössbauer Spectra
 - C. Electron Delocalization in Linear MV Trimers
- VI. The Vibronic Theory of MV Trimers
 - A. Vibronic States
 - B. Intervalence Transfer Band
 - C. Magnetic Properties
 - D. Electron Delocalization with Double Exchange. Application to Ferredoxins
- VII. MV Systems of Higher Nuclearity
- VIII. Concluding Remarks

Acknowledgments

Advances in Chemical Physics, Volume LXXXI, Edited by I. Prigogine and Stuart A. Rice. ISBN 0-471-54570-8 © 1992 John Wiley & Sons, Inc.