

Collective Orientational Relaxation in Dense Dipolar Liquids	1
By Biman Bagchi and Amalendu Chandra	
MECHANISTIC CLASSIFICATION OF CHEMICAL OSCILLATORS AND THE ROLE OF SPECIES	127
By Markus Eiswirth, Albrecht Freund, and John Ross	
Complex Scaling and Dynamical Processes in Amorphous Condensed Matter	201
By C. A. Chatzidimitriou-Dreismann	
CHEMICAL KINETICS OF FLUE GAS CLEANING BY IRRADIATION WITH ELECTRONS	315
By H. Mätzing	
A THEORETICAL STUDY OF ORIGINS OF RESONANCE RAMAN AND RESONANCE FLUORESCENCE USING A SPLIT-UP OF THE EMISSION CORRELATION FUNCTION	403
By H. Kono, Y. Nomura, and Y. Fujimura	
Author Index	463
Subject Index	475

Si **19** *.*.

COLLECTIVE ORIENTATIONAL RELAXATION IN DENSE DIPOLAR LIQUIDS

BIMAN BAGCHI and AMALENDU CHANDRA

Solid State and Structural Chemistry Unit, Indian Institute of Science,

Bangalore India

- I. Introduction
- II. Equilibrium and Time-Dependent Orientational Correlation Functions
- III. Relationship with Experimental Observables
 - A. Dielectric Relaxation
 - B. Dynamic Light Scattering
 - C. Magnetic Resonance Experiments
 - D. Neutron Scattering
 - E. Raman and Infrared Line Shapes
 - F. Quadrupolar Relaxation
 - G. Solvation Dynamics (Stokes Shift)
 - H. Kerr Relaxation
- IV. Extended Hydrodynamic Description of Orientational Motion
- V. Simple Markovian Theory of Collective Orientational Relaxation
- VI. Dielectric Relaxation: The Markovian Theory
 - A. $k \to 0, \omega \to 0$
 - B. $k \rightarrow 0$, ω Fixed
 - C. $\omega \to 0$, k Fixed
- VII. Inertial Effects in Polarization and Dielectric Relaxation: Collective Excitations in Dipolar Liquids
- VIII. Single-Particle Orientational Dynamics and the Dielectric Friction
 - IX. Memory Effects in Collective Orientational Relaxation
 - X. Relationship Between Microscopic and Macroscopic Orientational Relaxations
 - XI. Role of Collective Orientational Relaxation in Solvation Dynamics and Electron Transfer Reactions
 - A. Solvation Dynamics
 - B. The Electron Transfer Reactions

Advances in Chemical Physics Volume LXXX, Edited by I. Prigogine and Stuart A. Rice ISBN 0-471-53281-9 © 1991 John Wiley & Sons, Inc.

- XII. Kerr Relaxation
- XIII. Orientational Relaxation in a Liquid of Ellipsoidal Molecules
- XIV. Orientational Relaxation in a Supercooled Dipolar Liquid
- XV. Orientational Relaxation in Dipolar Mixtures
 - A. Collective Orientational Relaxation
 - B. The Dielectric Relaxation in a Binary Liquid
- XVI. Collective Orientational Relaxation in the Presence of an External Field

XVII. Future Problems

- A. Relaxation in a Nonhomogeneous State
- B. Relaxation in Hydrogen-Bonded Liquids
- C. Relaxation in a Supercooled Liquid
- D. Relaxation of Molecules in Orientationally Disordered Crystals
- E. Orientational Relaxation in Nematic Liquid Crystals
- F. Reorientational Dynamics of Molecules with an Internal Degree of Freedom
- G. Polarizable Fluids

XVIII. Conclusion

Acknowledgments

References

MECHANISTIC CLASSIFICATION OF CHEMICAL OSCILLATORS AND THE ROLE OF SPECIES

MARKUS EISWIRTH*, ALBRECHT FREUND**, and JOHN ROSS

Department of Chemistry, Stanford University, Stanford, California

- I. Introduction
- II. Essential and Nonessential Species
 - A. Definition of Nonessential Species
 - B. Identification of Nonessential Species
- III. Classification of Oscillators and Role of Essential Species
 - A. Category 1: Critical Current Cycles
 - B. Category 2: Strong Current Cycles
 - C. A Remark about Enzyme Reactions
- IV. Application to Mechanistic Studies
 - A. General Procedure
 - B. Examples
- V. Discussion
- VI. Summary
 - Appendix A: Directory of Oscillators
 - Appendix B: Diagrammatic Stability Analysis
 - Acknowledgments
 - References

COMPLEX SCALING AND DYNAMICAL PROCESSES IN AMORPHOUS CONDENSED MATTER

C. A. CHATZIDIMITRIOU-DREISMANN

Iwan N. Stranski-Institut für Physikalische und Theoretische Chemie Technische Universität Berlin Berlin, FRG

- I. Introduction
 - A. General Introductory Remarks
 - B. On the Physical Basis of Coherent-Dissipative Structures: CSM and Microscopic Irreversibility
 - C. Outline
- II. The Complex Scaling Method
 - A. Introductory Remarks
 - B. CSM, Unbounded Similarity Transformations, and Complex Symmetric Forms
- III. Subdynamics in the Light of CSM
- IV. Coherence, ODLRO, and Fermionic Density Matrix
 - A. Introductory Remarks
 - B. Box-and-Tail Form and Eigenvalues of the Fermionic $\Gamma^{(2)}$
- V. Complex Scaling and Statistical Mechanics: Coherent-Dissipative Structures
 - A. Introductory Remarks
 - B. Formalism of Coherent-Dissipative Structures
 - C. Spontaneous Creation of Coherent-Dissipative Structures: Physical Considerations
- VI. Applications to Dynamical Process in Condensed Matter
 - A. Remarks on "Correlations" and "Mechanisms"
 - B. Proton Transfer and Proton Delocalization in Water and Aqueous Solutions
 - C. Experimental Evidence for H⁺ and D⁺ Delocalization in H₂O/D₂O Mixtures
 - D. Further Proposed Experiments on H⁺ Delocalization

Advances in Chemical Physics Volume LXXX, Edited by I. Prigogine and Stuart A. Rice ISBN 0-471-53281-9 © 1991 John Wiley & Sons, Inc.

- E. Quantum Correlations in Molten Alkali Chlorides
- F. Quantum Correlations in the Spin Dynamics of Paramagnetic Gd at High Temperatures
- G. Quantum Correlation Effects in High T_c Superconductivity

VII. Outlook

Appendix A

Appendix B

Acknowledgments

References

CHEMICAL KINETICS OF FLUE GAS CLEANING BY IRRADIATION WITH ELECTRONS

H. MÄTZING

Kernforschungszentrum Karlsruhe GmbH, Laboratorium für Aerosolphysik und Filtertechnik I, Karlsruhe, FRG

CONTENTS

PART I: CHEMICAL KINETICS OF FLUE GAS CLEANING BY ELECTRON BEAM

- I. Introduction
- II. Radiolysis
 - A. The Fate of Fast Electrons
 - B. The Fate of Primary Species
- III. Gas-phase Chemistry: Excited Species, Primary Radicals, and Ions
 - A. Modeling Active Species Generation
 - B. Reactions of Primary Excited Species
 - C. Reactions of Primary Radicals
 - D. Reactions of Primary Ions
 - E. Positive Ion Chemistry
 - F. Negative Ion Chemistry
 - G. Ion Mutual Neutralization
 - H. Overview on the Chemistry of Primary Species
- IV. Gas-phase Chemistry: Positive Ions and Radicals
 - A. NO_x Oxidation by Positive Ions
 - B. Radical Reactions
 - C. Oxidation versus Reduction
 - D. A Simplified Reaction Scheme
- V. The Chemistry of Ammonia
 - A. Ammonia and Radicals
 - B. The Formation of Ammonium Salts
 - C. Ammonia and Sulfur Dioxide
 - D. Effects of Ammonia Addition

Advances in Chemical Physics Volume LXXX, Edited by I. Prigogine and Stuart A. Rice ISBN 0-471-53281-9 © 1991 John Wiley & Sons, Inc.

H. MÄTZING

- VI. Heterogeneous Chemistry
 - A. The Aerosol Surface
 - B. Heterogeneous Reactions
 - C. Effects of Gas-particle Reactions
- VII. Summary

References

PART II: THE AGATE-CODE

- I. Introduction
- II. The Structure of the AGATE-Code
- III. Data Representation
 - Table I. Radiolytic Processes
 - Table II. Positive Ion-Neutral Reactions
 - Table III. Negative Ion-Neutral Reactions
 - Table IV. Ionic Recombination Reactions in the Gas Phase
 - Table V. Reactions of Excited Species
 - Table VI. Bimolecular Reactions of (Ground-State) Neutrals
 - Table VII. Termolecular Reactions
 - Table VIII. Particle Formation and Heterogeneous Reactions

Acknowledgments

References

A THEORETICAL STUDY OF ORIGINS OF RESONANCE RAMAN AND RESONANCE FLUORESCENCE USING A SPLIT-UP OF THE EMISSION CORRELATION FUNCTION

H. KONO

Department of Basic Technology, Faculty of Engineering, Yamagata University, Yonezawa, Japan

Y. NOMURA and Y. FUJIMURA

Department of Chemistry, Faculty of Science, Tohoku University, Sendai, Japan

CONTENTS

- I. Introduction
- II. Theoretical Background
- III. Divided Emission Correlation Functions
- IV. Analytical and Numerical Results
 - A. The Fluorescencelike Component due to Molecular Pure Dephasing: The Correlation Function G_S^{PF}
 - B. The Fluorescencelike Components due to Spectral Broadening: The Correlation Functions G_S^{EF} and G_S^{TF}
 - C. The Ramanlike Component: The Correlation Function G_S^R
 - D. The Interferencelike Components: The Correlation Functions G_S^M and G_S^T
- V. The Raman State and the Proper Excited State
- VI. The Spectral Broadening Mechanisms and the Molecular Pure Dephasing Mechanism
- VII. Non-Markovian Effect: An Analysis Based on the Stochastic Model
 - A. Derivation of Emission Correlation Functions
 - B. The Jump Process due to Frequency Modulation
 - C. Rearrangement of Emission Correlation Functions
 - D. Line Shape Calculation
- VIII. Summary and Conclusion

Acknowledgments

References

Advances in Chemical Physics Volume LXXX, Edited by I. Prigogine and Stuart A. Rice ISBN 0-471-53281-9 © 1991 John Wiley & Sons, Inc.