

Internal Excitations in Liquids Richard M. Stratt	1
EQUILIBRIUM AND DYNAMICAL FOURIER PATH INTEGRAL METHODS J. D. Doll, L. Freeman, and Thomas L. Beck	61
Fluctuating Nonlinear Hydrodynamics, Dense Fluids, and the Glass Transition Bongsoo Kim and Gene F. Mazenko	129
STRUCTURE OF THE ELECTRIC DOUBLE LAYER L. Blum	171
Dynamics of Dense Polymer Systems: Computer Simulations and Analytic Theories Jeffrey Skolnick and Andrzej Kolinski	223
AUTHOR INDEX	279
Subject Index	289

INTERNAL EXCITATIONS IN LIQUIDS

RICHARD M. STRATT*

Department of Chemistry, Brown University, Providence, RI

- I. Introduction
- II. Hamiltonians
 - A. Continuous Internal Coordinates
 - B. Discrete Internal Coordinates
 - C. Artificial Degrees of Freedom
- III. The Role of Quantum Mechanics
 - A. Qualitative Considerations
 - B. Discretized Path Integral Formulation
- IV. Correlation Functions and Moments
 - A. Correlation Functions Relevant to Internal Degrees of Freedom
 - B. Moments of Internal Coordinates
- V. Techniques of Intramolecular Statistical Mechanics
 - A. Cumulant Expansion and Mean-Field Theory
 - B. Charging
 - C. Thermodynamic Perturbation Theory and the Mean-Spherical Approximation
- VI. General Features of Intramolecular Behavior in Liquids References

EQUILIBRIUM AND DYNAMICAL FOURIER PATH INTEGRAL METHODS

J. D. DOLL

Department of Chemistry, Brown University, Providence, Rhode Island

DAVID L. FREEMAN

Department of Chemistry, University of Rhode Island, Kingston, Rhode Island

and

THOMAS L. BECK

Department of Chemistry, University of Cincinnati, Cincinnati, Ohio

- I. Introduction
- II. Equilibrium Methods
 - A. Formal Development
 - 1. Introduction
 - 2. Path Integral Methods
 - 3. Fourier Path Integral Methods
 - 4. Kinetic Energy Estimation
 - 5. Partial Averaging
 - B. The Quartic Oscillator
 - C. Many-Particle Applications
 - 1. Cluster Thermodynamics
 - 2. Cluster Melting
 - 3. Fluids

III. Dynamics

- A. Correlation Function Preliminaries
- B. Pseudo-Classical Formulation
- C. Monte Carlo Formulation of the Dynamical Problem
- D. The Stationary Phase Monte Carlo Method
- E. The Stationary Phase Monte Carlo Calculation of Thermally Symmetrized Time Correlation Functions
 - Application of Stationary Phase Monte Carlo Methods to the Calculation of Thermally Symmetrized Time Correlation Functions
- F. Direct Time Correlation Functions
 - 1. Formal Development
 - 2. Applications
- IV. Summary and Discussion

Acknowledgments

Appendix

FLUCTUATING NONLINEAR HYDRODYNAMICS, DENSE FLUIDS, AND THE GLASS TRANSITION

BONGSOO KIM and GENE F. MAZENKO

The James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois

CONTENTS

- I. Introduction
- II. Kinetic Theory and Molecular Dynamics
- III. Stochastic Models and Generalized Hydrodynamics
- IV. Fluctuating Nonlinear Hydrodynamics
- V. Incompressible Case
- VI. The Leutheusser Transitions
- VII. Critique of the Leutheusser Transition
- VIII. Das and Mazenko Analysis
 - A. The MSR Method
 - B. Correlation and Response Functions
 - C. Nonperturbative Results
 - D. Transverse Self-Energies
 - E. Longitudinal Case
 - F. Cutoff for the Leutheusser Transition
 - G. Results at First Order in Perturbation Theory
 - H. Numerical Analysis
 - IX. Conclusions

Acknowledgments

STRUCTURE OF THE ELECTRIC DOUBLE LAYER

L. BLUM

Department of Physics, University of Puerto Rico, Rio Piedras, Puerto Rico

CONTENTS

Introduction: The Experimental Evidence

- I. Theories for the Singlet and Pair Distribution Functions
 - A. Basic Definitions: The Gouy Chapman Theory
 - B. Integral Equations-The Primitive Model
 - 1. Ornstein-Zernike-Based Approximations
 - 2. BGY-Based Approximations
 - 3. WLMB-Based Equations
 - 4. Kirkwoods Equation
- II. Sum Rules for the Charged Interface
 - A. Dynamic Sum Rules
 - B. The Screening Sum Rules
 - C. Other Sum Rules
- III. The Sticky Site Model
 - A. Exact Relations for the SSM
 - 1. Sum Rules for the Fluid Density Functions
 - 2. Exact Results for the Adsorbed Layer
 - B. The Three-State Adsorption Model
 - C. The Two-State Adsorption Model
 - 1. Single-Site Occupancy
 - 2. Multiple-site Occupancy: The Hard Hexagon Case

Acknowledgments

	32	

DYNAMICS OF DENSE POLYMER SYSTEMS: COMPUTER SIMULATIONS AND ANALYTIC THEORIES

JEFFREY SKOLNICK

Molecular Biology Department, Research Institute of Scripps Clinic, La Jolla, California

and

ANDRZEJ KOLINSKI

Department of Chemistry, University of Warsaw, Warsaw, Poland

- I. Introduction
 - A. Experimental Phenemonology
 - B. Entanglements: An Overview
 - C. Rouse Model
 - D. Reptation Model
- II. Computer Simulations
 - A. Dynamic Monte Carlo Results
 - 1. Center-of-Mass Motion and Longest Internal Relaxation Times
 - 2. Examination of the Primitive Path Dynamics
 - B. Probe Polymer in Matrices of Different Molecular Weight
 - C. MCD Simulation of Melts of Rings
 - 1. Growth of Melts of Rings
 - 2. Equilibrium Properties
 - 3. Dynamic Properties of Unknotted Rings
 - 4. Properties of Self-Knotted Rings
 - D. The Origin of Entanglements
 - 1. Bead Distribution Profiles
 - 2. Nature of the Contacts between Chains
 - E. Cooperative Relaxation Dynamics

- F. Dynamics of Chains in Random Media
- G. Brownian Dynamics Simulation of Polymer Melts
- III. Theoretical Treatments of Polymer Dynamics
 - A. Fujita-Einaga Theory—The Noodle Effect
 - 1. Diffusion Constant
 - 2. Viscosity
 - B. Phemonenological Theory of Dynamic Entanglements
 - 1. Diffusion Constant
 - 2. Viscosity
 - C. Coupling Model of Polymer Dynamics
 - D. The Fixman Model of Polymer Melt Dynamics
 - E. Hydrodynamic Interaction Theory of Concentrated Solutions—The Phillies Model
- IV. Summary and Conclusions

Acknowledgment

